Deep learning models for real-life human activity recognition from smartphone sensor data

被引:4
|
作者
Garcia-Gonzalez, Daniel [1 ]
Rivero, Daniel [1 ]
Fernandez-Blanco, Enrique [1 ]
Luaces, Miguel R. [1 ]
机构
[1] Univ A Coruna, Dept Comp Sci & Informat Technol, CITIC, La Coruna 15071, Spain
关键词
HAR; CNN; LSTM; Real life; Smartphones; Sensors;
D O I
10.1016/j.iot.2023.100925
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Nowadays, the field of human activity recognition (HAR) is a remarkably hot topic within the scientific community. Given the low cost, ease of use and high accuracy of the sensors from different wearable devices and smartphones, more and more researchers are opting to do their bit in this area. However, until very recently, all the work carried out in this field was done in laboratory conditions, with very few similarities with our daily lives. This paper will focus on this new trend of integrating all the knowledge acquired so far into a real-life environment. Thus, a dataset already published following this philosophy was used. In this way, this work aims to be able to identify the different actions studied there. In order to perform this classification, this paper explores new designs and architectures for models inspired by the ones which have yielded the best results in the literature. More specifically, different configurations of Convolutional Neural Networks (CNN) and Long-Short Term Memory (LSTM) have been tested, but on real-life conditions instead of laboratory ones. It is worth mentioning that the hybrid models formed from these techniques yielded the best results, with a peak accuracy of 94.80% on the dataset used.
引用
收藏
页数:22
相关论文
共 50 条
  • [1] New machine learning approaches for real-life human activity recognition using smartphone sensor-based data
    Garcia-Gonzalez, Daniel
    Rivero, Daniel
    Fernandez-Blanco, Enrique
    Luaces, Miguel R.
    KNOWLEDGE-BASED SYSTEMS, 2023, 262
  • [2] A Public Domain Dataset for Real-Life Human Activity Recognition Using Smartphone Sensors
    Garcia-Gonzalez, Daniel
    Rivero, Daniel
    Fernandez-Blanco, Enrique
    Luaces, Miguel R.
    SENSORS, 2020, 20 (08)
  • [3] Hybrid deep learning approaches for smartphone sensor-based human activity recognition
    Ghate, Vasundhara
    Hemalatha, Sweetlin C.
    MULTIMEDIA TOOLS AND APPLICATIONS, 2021, 80 (28-29) : 35585 - 35604
  • [4] Hybrid deep learning approaches for smartphone sensor-based human activity recognition
    Vasundhara Ghate
    Sweetlin Hemalatha C
    Multimedia Tools and Applications, 2021, 80 : 35585 - 35604
  • [5] A robust human activity recognition system using smartphone sensors and deep learning
    Hassan, Mohammed Mehedi
    Uddin, Md. Zia
    Mohamed, Amr
    Almogren, Ahmad
    FUTURE GENERATION COMPUTER SYSTEMS-THE INTERNATIONAL JOURNAL OF ESCIENCE, 2018, 81 : 307 - 313
  • [6] A Deep Learning Framework for Smartphone Based Human Activity Recognition
    Mallik, Manjarini
    Sarkar, Garga
    Chowdhury, Chandreyee
    MOBILE NETWORKS & APPLICATIONS, 2024, 29 (01) : 29 - 41
  • [7] Deep Learning Models for Real-time Human Activity Recognition with Smartphones
    Wan, Shaohua
    Qi, Lianyong
    Xu, Xiaolong
    Tong, Chao
    Gu, Zonghua
    MOBILE NETWORKS & APPLICATIONS, 2020, 25 (02) : 743 - 755
  • [8] A new dataset for human activity recognition and its classification with deep learning models
    Vurgun, Yasin
    Kiran, Mustafa Servet
    JOURNAL OF THE FACULTY OF ENGINEERING AND ARCHITECTURE OF GAZI UNIVERSITY, 2025, 40 (01): : 653 - 671
  • [9] A Survey of Deep Learning Based Models for Human Activity Recognition
    Nida Saddaf Khan
    Muhammad Sayeed Ghani
    Wireless Personal Communications, 2021, 120 : 1593 - 1635
  • [10] A Survey of Deep Learning Based Models for Human Activity Recognition
    Khan, Nida Saddaf
    Ghani, Muhammad Sayeed
    WIRELESS PERSONAL COMMUNICATIONS, 2021, 120 (02) : 1593 - 1635