An efficient approximation to the stochastic Allen-Cahn equation with random diffusion coefficient field and multiplicative noise
被引:0
作者:
Qi, Xiao
论文数: 0引用数: 0
h-index: 0
机构:
Xiamen Univ, Sch Math Sci, Xiamen 361005, Peoples R China
Xiamen Univ, Fujian Prov Key Lab Math Modeling & High Performan, Xiamen 361005, Peoples R ChinaXiamen Univ, Sch Math Sci, Xiamen 361005, Peoples R China
Qi, Xiao
[1
,2
]
Zhang, Yanrong
论文数: 0引用数: 0
h-index: 0
机构:
Xiamen Univ, Sch Math Sci, Xiamen 361005, Peoples R China
Xiamen Univ, Fujian Prov Key Lab Math Modeling & High Performan, Xiamen 361005, Peoples R ChinaXiamen Univ, Sch Math Sci, Xiamen 361005, Peoples R China
Zhang, Yanrong
[1
,2
]
Xu, Chuanju
论文数: 0引用数: 0
h-index: 0
机构:
Xiamen Univ, Sch Math Sci, Xiamen 361005, Peoples R China
Xiamen Univ, Fujian Prov Key Lab Math Modeling & High Performan, Xiamen 361005, Peoples R ChinaXiamen Univ, Sch Math Sci, Xiamen 361005, Peoples R China
Xu, Chuanju
[1
,2
]
机构:
[1] Xiamen Univ, Sch Math Sci, Xiamen 361005, Peoples R China
[2] Xiamen Univ, Fujian Prov Key Lab Math Modeling & High Performan, Xiamen 361005, Peoples R China
This paper studies the stochastic Allen-Cahn equation involving random diffusion coefficient field and multiplicative force noise. A new time-stepping method based on auxiliary variable approach is proposed and analyzed. The proposed method is efficient thanks to its low computational complexity. Furthermore, it is unconditionally stable in the sense that a discrete energy is dissipative when the multiplicative noise is absent. Our numerical experiments show that the new scheme is much more robust than the classical semi-implicit Euler-Maruyama scheme, particularly when the interface width parameter is small. Several numerical examples are provided to demonstrate the performance of the proposed method.
机构:
Univ Fed Rio de Janeiro, Inst Matemat, Caixa Postal 68530, BR-21945970 Rio De Janeiro, BrazilInst Venezolano Invest Cient, Dept Matemat, Apartado Postal 20632, Caracas 1020A, Venezuela
Valle, Glauco
Vares, Maria Eulalia
论文数: 0引用数: 0
h-index: 0
机构:
Univ Fed Rio de Janeiro, Inst Matemat, Caixa Postal 68530, BR-21945970 Rio De Janeiro, BrazilInst Venezolano Invest Cient, Dept Matemat, Apartado Postal 20632, Caracas 1020A, Venezuela
机构:
Xiamen Univ, Sch Math Sci, Xiamen, Peoples R China
Xiamen Univ, Fujian Prov Key Lab Math Modeling & High Performan, Xiamen, Peoples R ChinaXiamen Univ, Sch Math Sci, Xiamen, Peoples R China
Huang, Can
Shen, Jie
论文数: 0引用数: 0
h-index: 0
机构:
Eastern Inst Technol, Eastern Inst Adv Study, Ningbo 315200, Zhejiang, Peoples R China
Purdue Univ, Dept Math, W Lafayette, IN USAXiamen Univ, Sch Math Sci, Xiamen, Peoples R China