Deep learning and machine learning based air pollution prediction model for smart environment design planning

被引:2
|
作者
Karthikeyan, B. [1 ]
Mohanasundaram, R. [2 ]
Suresh, P. [3 ]
Babu, J. Jagan [3 ,4 ]
机构
[1] Panimalar Engn Coll, Dept Informat Technol, Chennai, India
[2] VIT, Sch Comp Sci & Engn, Vellore, India
[3] KPR Inst Engn & Technol, Dept Comp Sci & Engn, Coimbatore 641407, India
[4] RMD Engn Coll, Dept Elect & Commun Engn, Chennai, India
来源
GLOBAL NEST JOURNAL | 2023年 / 25卷 / 05期
关键词
Air pollution monitoring; smart environment; sustainability; deep learning; parameter optimization;
D O I
10.30955/gnj.004735
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
For the past few decades, owing to human activities, urbanization, and industrialization, air pollution is becoming severe across several countries. Deep Learning (DL) and Machine Learning (ML) techniques had great contribution to the development of methods in various aspects of prediction, planning, and uncertainty analysis of smart cities and urban advancement in the current scenario. Many of the cities which are developed suffered from severe air quality (AQ) because of the rapid growth in industrialization and population. In this paper, we introduce a deep learning based air pollution prediction model for smart environment design planning (DLAPP-SEDP). The presented DLAPP-SEDP technique majorly intends to predict the level of air pollution in the smart environment. It follows a three-stage process namely data pre-processing, air pollution prediction, and hyperparameter tuning. At the initial stage, the presented DLAPP-SEDP technique performs various levels of data pre-processing such as missing value replacement, categorical value encoding, normalization, and feature selection. In the next stage, the DLAPP-SEDP technique employs graph convolutional network (GCN) model. Finally, the DLAPP-SEDP technique utilizes atomic orbital search optimization (AOSO) algorithm for optimal hyperparameter tuning process, showing the novelty of the work. To demonstrate the enhanced predictive efficiency of the DLAPP-SEDP method, a wide-ranging experimental analysis can be carried out. The experimental values assured the enhancements of the DLAPP-SEDP method over other recent techniques.
引用
收藏
页码:11 / 19
页数:9
相关论文
共 50 条
  • [41] Deep Learning Based Anomaly Detection Approach for Air Pollution Assessment
    Borah, Anindita
    IEEE TRANSACTIONS ON BIG DATA, 2025, 11 (02) : 414 - 425
  • [42] NOx Prediction Method Based on Deep Extreme Learning Machine
    Li, Ying
    Li, Fanjun
    2018 3RD INTERNATIONAL CONFERENCE ON COMPUTATIONAL INTELLIGENCE AND APPLICATIONS (ICCIA), 2018, : 97 - 101
  • [43] A systematic survey of air quality prediction based on deep learning
    Zhang, Zhen
    Zhang, Shiqing
    Chen, Caimei
    Yuan, Jiwei
    ALEXANDRIA ENGINEERING JOURNAL, 2024, 93 : 128 - 141
  • [44] Mechanism model combined with deep learning models for accurate prediction of indoor air pollution in residential and commercial spaces
    Shi, Ting
    Wang, Kai
    Yang, Wu
    Wang, Peihao
    Ao, Yunpeng
    Zhang, Yuling
    Qiao, Junfei
    JOURNAL OF BUILDING ENGINEERING, 2025, 103
  • [45] Machine Learning and Deep Learning Based Traffic Classification and Prediction in Software Defined Networking
    Mohammed, Ayse Rumeysa
    Mohammed, Shady A.
    Shirmohammadi, Shervin
    2019 IEEE INTERNATIONAL SYMPOSIUM ON MEASUREMENTS & NETWORKING (M&N 2019), 2019,
  • [46] Software Defect Prediction Based on Machine Learning and Deep Learning Techniques: An Empirical Approach
    Albattah, Waleed
    Alzahrani, Musaad
    AI, 2024, 5 (04) : 1743 - 1758
  • [47] Dropout prediction in Moocs using deep learning and machine learning
    Ram B. Basnet
    Clayton Johnson
    Tenzin Doleck
    Education and Information Technologies, 2022, 27 : 11499 - 11513
  • [48] Application of machine learning and deep learning for the prediction of HIV/AIDS
    Alehegn, Minyechil
    HIV & AIDS REVIEW, 2022, 21 (01): : 17 - 23
  • [49] Prediction of Aureococcus anophageffens using machine learning and deep learning
    Niu, Jie
    Lu, Yanqun
    Xie, Mengyu
    Ou, Linjian
    Cui, Lei
    Qiu, Han
    Lu, Songhui
    MARINE POLLUTION BULLETIN, 2024, 200
  • [50] SDN Architecture for Smart Homes Security with Machine Learning and Deep Learning
    Alonazi, Wesam Abdulrhman
    Hamdi, Hedi
    Abd El-Aziz, A. A.
    Azim, Nesrine A.
    INTERNATIONAL JOURNAL OF ADVANCED COMPUTER SCIENCE AND APPLICATIONS, 2022, 13 (10) : 917 - 927