A steady-state model reconstruction of the patagonian ice sheet during the last glacial maximum

被引:2
|
作者
Wolff, Ingo W. [1 ]
Glasser, Neil F. [1 ]
Harrison, Stephan [2 ]
Wood, Joanne Laura [2 ]
Hubbard, Alun [3 ,4 ]
机构
[1] Aberystwyth Univ, Dept Geog & Earth Sci, Aberystwyth SY23 3DB, Wales
[2] Univ Exeter, Ctr Geog & Environm Sci, Penryn Campus, Penryn TR10 9FE, Cornwall, England
[3] UiT the Arctic Univ Norway, IC3 Ctr Ice Climate Carbon & Cryosphere, Inst Geosci, N-9037 Tromso, Norway
[4] Oulu Univ, Geog Res Unit, Oulu F-90570, Finland
来源
基金
芬兰科学院;
关键词
SOUTH-AMERICA; LAKE TERRACES; CHRONOLOGY; CLIMATE; PLEISTOCENE; GEOMORPHOLOGY; FLUCTUATIONS; DEGLACIATION; VICINITY; EVENTS;
D O I
10.1016/j.qsa.2023.100103
中图分类号
P9 [自然地理学];
学科分类号
0705 ; 070501 ;
摘要
During the Last Glacial Maximum (LGM), the Patagonian Ice Sheet (PIS) was the largest Quaternary ice mass in the Southern Hemisphere outside of Antarctica. Although the margins of the LGM ice sheet are now well established through end-moraine mapping and dating, apart from a few modelling and empirical studies, there remains a lack of constraint on its thickness and three-dimensional configuration. Here, we provide a high-resolution steady-state model reconstruction of the PIS at its maximum -LGM -extent applied using Nye's perfect-plastic ice rheology. The yield-strength parameter for the perfect-plastic flow model was calibrated against independent empirical reconstructions of the Lago Pueyrred & PRIME;on Glacier, where the former vertical extent of this major outlet glacier is well constrained by cosmogenically-dated trimlines and lateral and end-moraine limits. Using this derived yield-strength parameter, the perfect-plastic model is then applied to multiple flowlines demarking each outlet across the entirety of the PIS in a GIS framework. Our results reveal that the area of the PIS was-504,500 km2 (& PLUSMN;8.5%) with a corresponding modelled ice volume of-554,500 km3 (& PLUSMN;10%), equivalent to-1.38 m (& PLUSMN;10%) of eustatic sea-level lowering at the LGM. Maximum surface elevation was at least 3500m asl although the majority of the ice sheet surface was below 2500 m asl. We find that our ice sheet reconstruction is in good general agreement with previous estimates of net PIS volume derived from transient modelling studies. We attribute the slightly lower aspect-ratio of our ice sheet (and its concomitant 5% reduction in volume and sea-level equivalent) to the lower yield strength applied, based on more temperate and dynamic ice sheet conditions.
引用
收藏
页数:9
相关论文
共 50 条
  • [21] A modelling insight into the Icelandic Last Glacial Maximum ice sheet
    Hubbard, Alun
    Sugden, David
    Dugmore, Andrew
    Norddahl, Hreggvidur
    Petursson, Halldor G.
    QUATERNARY SCIENCE REVIEWS, 2006, 25 (17-18) : 2283 - 2296
  • [22] The geologic basis for a reconstruction of a grounded ice sheet in McMurdo Sound, Antarctica, at the last glacial maximum
    Denton, GH
    Marchant, DR
    GEOGRAFISKA ANNALER SERIES A-PHYSICAL GEOGRAPHY, 2000, 82A (2-3) : 167 - 211
  • [23] Reconstruction of changes in the Weddell Sea sector of the Antarctic Ice Sheet since the Last Glacial Maximum
    Hillenbrand, Claus-Dieter
    Bentley, Michael J.
    Stolldorf, Travis D.
    Hein, Andrew S.
    Kuhn, Gerhard
    Graham, Alastair G. C.
    Fogwill, Christopher J.
    Kristoffersen, Yngve
    Smith, James A.
    Anderson, John B.
    Larter, Robert D.
    Melles, Martin
    Hodgson, Dominic A.
    Mulvaney, Robert
    Sugden, David E.
    QUATERNARY SCIENCE REVIEWS, 2014, 100 : 111 - 136
  • [24] The deglacial history of southeast sector of the Greenland Ice Sheet during the Last Glacial Maximum
    Roberts, David H.
    Long, Antony J.
    Schnabel, Christoph
    Freeman, Stewart
    Simpson, Matthew J. R.
    QUATERNARY SCIENCE REVIEWS, 2008, 27 (15-16) : 1505 - 1516
  • [25] Support for the Innuitian Ice Sheet in the Canadian High Arctic during the Last Glacial Maximum
    England, J
    JOURNAL OF QUATERNARY SCIENCE, 1998, 13 (03) : 275 - 280
  • [26] Dynamical reconstruction of the global ocean state during the Last Glacial Maximum
    Kurahashi-Nakamura, Takasumi
    Paul, Andre
    Losch, Martin
    PALEOCEANOGRAPHY, 2017, 32 (04): : 326 - 350
  • [27] A community-based geological reconstruction of Antarctic Ice Sheet deglaciation since the Last Glacial Maximum
    Bentley, Michael J.
    Cofaigh, Colm O.
    Anderson, John B.
    Conway, Howard
    Davies, Bethan
    Graham, Alastair G. C.
    Hillenbrand, Claus-Dieter
    Hodgson, Dominic A.
    Jamieson, Stewart S. R.
    Larter, Robert D.
    Mackintosh, Andrew
    Smith, James A.
    Verleyen, Elie
    Ackert, Robert P.
    Bart, Philip J.
    Berg, Sonja
    Brunstein, Daniel
    Canals, Miguel
    Colhoun, Eric A.
    Crosta, Xavier
    Dickens, William A.
    Domack, Eugene
    Dowdeswell, Julian A.
    Dunbar, Robert
    Ehrmann, Werner
    Evans, Jeffrey
    Favier, Vincent
    Fink, David
    Fogwill, Christopher J.
    Glasser, Neil F.
    Gohl, Karsten
    Golledge, Nicholas R.
    Goodwin, Ian
    Gore, Damian B.
    Greenwood, Sarah L.
    Hall, Brenda L.
    Hall, Kevin
    Hedding, David W.
    Hein, Andrew S.
    Hocking, Emma P.
    Jakobsson, Martin
    Johnson, Joanne S.
    Jomelli, Vincent
    Jones, R. Selwyn
    Klages, Johann P.
    Kristoffersen, Yngve
    Kuhn, Gerhard
    Leventer, Amy
    Licht, Kathy
    Lilly, Katherine
    QUATERNARY SCIENCE REVIEWS, 2014, 100 : 1 - 9
  • [28] The Last Glacial Maximum British-Irish Ice Sheet: a reconstruction using digital terrain mapping
    Fretwell, P. T.
    Smith, D. E.
    Harrison, S.
    JOURNAL OF QUATERNARY SCIENCE, 2008, 23 (03) : 241 - 248
  • [29] Reconstruction of the West Antarctic Ice Sheet in Pine Island Bay during the last glacial maximum and its subsequent retreat history
    Lowe, AL
    Anderson, JB
    QUATERNARY SCIENCE REVIEWS, 2002, 21 (16-17) : 1879 - 1897
  • [30] Atmospheric River Contributions to Ice Sheet Hydroclimate at the Last Glacial Maximum
    Skinner, Christopher B. B.
    Lora, Juan M. M.
    Tabor, Clay
    Zhu, Jiang
    GEOPHYSICAL RESEARCH LETTERS, 2023, 50 (01)