Quantifying the Benefits of Altimetry Assimilation in Seasonal Forecasts of the Upper Ocean

被引:9
作者
Widlansky, Matthew J. J. [1 ]
Long, Xiaoyu [2 ,3 ]
Balmaseda, Magdalena A. A. [4 ]
Spillman, Claire M. M. [5 ]
Smith, Grant [5 ]
Zuo, Hao [4 ]
Yin, Yonghong [5 ]
Alves, Oscar [5 ]
Kumar, Arun [6 ]
机构
[1] Univ Hawaii Manoa, Cooperat Inst Marine & Atmospher Res, Sch Ocean & Earth Sci & Technol, Honolulu, HI 96822 USA
[2] Univ Colorado Boulder, Cooperat Inst Res Environm Sci, Boulder, CO USA
[3] NOAA, Phys Sci Lab, Boulder, CO USA
[4] European Ctr Medium Range Weather Forecasts, Reading, England
[5] Bur Meteorol, Melbourne, Vic, Australia
[6] NCEP NWS NOAA, Climate Predict Ctr, College Pk, MD USA
关键词
seasonal climate forecasting; sea level variability; ocean heat content; ocean data assimilation; SEA-LEVEL; ANALYSIS SYSTEM; LARGE-SCALE; TEMPERATURE; VARIABILITY;
D O I
10.1029/2022JC019342
中图分类号
P7 [海洋学];
学科分类号
0707 ;
摘要
Satellite altimetry measurements of sea surface height provide near-global ocean state observations on sub-monthly time scales, which are not always utilized by seasonal climate forecasting systems. As early as the mid-1990s, attempts were made to assimilate altimetry observations to initialize climate models. These experiments demonstrated improved ocean forecasting skill, especially compared to experiments that did not assimilate subsurface ocean temperature information. Nowadays, some operational climate forecasting models utilize altimetry in their assimilation systems, whereas others do not. Here, we assess the impact of altimetry assimilation on seasonal prediction skill of ocean variables in two climate forecasting systems that are from the European Centre for Medium-Range Weather Forecasts (SEAS5) and the Australian Bureau of Meteorology (ACCESS-S). We show that assimilating altimetry improves the initialization of subsurface ocean temperatures, as well as seasonal forecasts of monthly variability in upper-ocean heat content and sea level. Skill improvements are largest in the subtropics, where there are typically less subsurface ocean observations available to initialize the forecasts. In the tropics, there are no noticeable improvements in forecast skill. The positive impact of altimetry assimilation on forecast skill related to the subsurface ocean does not seem to affect predictions of sea surface temperature. Whether this is because current forecasting systems are close to the potential predictability limit for the ocean surface, or perhaps altimetry observations are not fully exploited, remains a question. In summary, we find that utilizing altimetry observations improves the overall global ocean forecasting skill, at least for upper-ocean heat content and sea level.
引用
收藏
页数:25
相关论文
共 84 条
[31]   EN4: Quality controlled ocean temperature and salinity profiles and monthly objective analyses with uncertainty estimates [J].
Good, Simon A. ;
Martin, Matthew J. ;
Rayner, Nick A. .
JOURNAL OF GEOPHYSICAL RESEARCH-OCEANS, 2013, 118 (12) :6704-6716
[32]  
Gurvan M., 2022, NEMO ocean engine, DOI DOI 10.5281/ZENODO.6334656
[33]  
HAYES SP, 1991, B AM METEOROL SOC, V72, P339, DOI 10.1175/1520-0477(1991)072<0339:TTAMAF>2.0.CO
[34]  
2
[35]   ACCESS-S1: The new Bureau of Meteorology multi-week to seasonal prediction system [J].
Hudson, Debra ;
Alves, Oscar ;
Hendon, Harry H. ;
Lim, Eun-Pa ;
Liu, Guoqiang ;
Luo, Jing-Jia ;
MacLachlan, Craig ;
Marshall, Andrew G. ;
Shi, Li ;
Wang, Guomin ;
Wedd, Robin ;
Young, Griffith ;
Zhao, Mei ;
Zhou, Xiaobing .
JOURNAL OF SOUTHERN HEMISPHERE EARTH SYSTEMS SCIENCE, 2017, 67 (03) :132-159
[36]   A window on the deep ocean: The special value of ocean bottom pressure for monitoring the large-scale, deep-ocean circulation [J].
Hughes, Chris W. ;
Williams, Joanne ;
Blaker, Adam ;
Coward, Andrew ;
Stepanov, Vladimir .
PROGRESS IN OCEANOGRAPHY, 2018, 161 :19-46
[37]  
IAP Ocean Heat Content, 2023, IAP OCEAN HEAT CONTE
[38]   Global seasonal forecasts of marine heatwaves [J].
Jacox, Michael G. ;
Alexander, Michael A. ;
Amaya, Dillon ;
Becker, Emily ;
Bograd, Steven J. ;
Brodie, Stephanie ;
Hazen, Elliott L. ;
Buil, Mercedes Pozo ;
Tommasi, Desiree .
NATURE, 2022, 604 (7906) :486-+
[39]   GLOBAL OCEANS [J].
Johnson, G. C. ;
Lurnpkin, R. ;
Alin, Simone R. ;
Amaya, Dillon J. ;
Baringer, Molly O. ;
Boyer, Tim ;
Brandt, Peter ;
Carter, Brendan R. ;
Cetinic, Ivona ;
Chambers, Don P. ;
Cheng, Lijing ;
Collins, Andrew U. ;
Cosca, Cathy ;
Domingues, Ricardo ;
Dong, Shenfu ;
Feely, Richard A. ;
Frajka-Williams, Eleanor ;
Franz, Bryan A. ;
Gilson, John ;
Goni, Gustavo ;
Hamlington, Benjamin D. ;
Herrford, Josefine ;
Hu, Zeng-Zhen ;
Huang, Boyin ;
Ishii, Masayoshi ;
Jevrejeva, Svetlana ;
Kennedy, John J. ;
Kersale, Marion ;
Killick, Rachel E. ;
Landschutzer, Peter ;
Lankhorst, Matthias ;
Leuliette, Eric ;
Locarnini, Ricardo ;
Lyman, John M. ;
Marra, John J. ;
Meinen, Christopher S. ;
Merrifield, Mark A. ;
Mitchum, Gary T. ;
Moat, Ben I. ;
Nerem, R. Steven ;
Perez, Renellys C. ;
Purkey, Sarah G. ;
Reagan, James ;
Sanchez-Franks, Alejandra ;
Scannell, Hillary A. ;
Schmid, Claudia ;
Scott, Joel P. ;
Siegel, David A. ;
Smeed, David A. ;
Stackhouse, Paul W. .
BULLETIN OF THE AMERICAN METEOROLOGICAL SOCIETY, 2021, 102 (08) :S143-S198
[40]   SEAS5: the new ECMWF seasonal forecast system [J].
Johnson, Stephanie J. ;
Stockdale, Timothy N. ;
Ferranti, Laura ;
Balmaseda, Magdalena A. ;
Molteni, Franco ;
Magnusson, Linus ;
Tietsche, Steffen ;
Decremer, Damien ;
Weisheimer, Antje ;
Balsamo, Gianpaolo ;
Keeley, Sarah P. E. ;
Mogensen, Kristian ;
Zuo, Hao ;
Monge-Sanz, Beatriz M. .
GEOSCIENTIFIC MODEL DEVELOPMENT, 2019, 12 (03) :1087-1117