Comprehensive evaluation of multiple machine learning classifiers for predicting freeway incident duration

被引:5
|
作者
Hamad, Khaled [1 ,2 ]
Obaid, Lubna [1 ,2 ]
Nassif, Ali Bou [3 ]
Abu Dabous, Saleh [1 ,2 ]
Al-Ruzouq, Rami [1 ,2 ]
Zeiada, Waleed [1 ,2 ]
机构
[1] Univ Sharjah, Dept Civil & Environm Engn, Sharjah, U Arab Emirates
[2] Univ Sharjah, Res Inst Sci & Engn, Sustainable Civil Infrastruct Syst Res Grp, POB 27272, Sharjah, U Arab Emirates
[3] Univ Sharjah, Comp Engn Dept, Sharjah City, U Arab Emirates
关键词
Incident duration prediction; Feature selection; Machine learning classifiers; Classifiers comparative analysis; Incident classification; CLEARANCE TIME; INFLUENTIAL FACTORS; NEURAL-NETWORK; RESPONSE-TIME; DECISION TREE; TEXT ANALYSIS; M5P TREE; MODEL; CLASSIFICATION; FORECAST;
D O I
10.1007/s41062-023-01138-1
中图分类号
TU [建筑科学];
学科分类号
0813 ;
摘要
This study compares the accuracy and complexity of eleven machine learning classifiers for the problem of incident duration prediction. The proposed framework integrates feature selection and modeling techniques to evaluate the effect of multiple influencing factors and choose the best model for predicting incident durations. Models were developed and tested using an incident dataset collected from the Houston TranStar incidents archive, including more than 110,000 records. Features were selected based on integrating information gain, correlation-based, and relief-based evaluators' results. The developed and fine-tuned classifiers were compared in terms of multiple accuracy measures (precision, recall, F-1 score, and AUC) and complexity measures (memory storage, training time, and testing times). Overall, results showed that among the developed models, the support vector machines (SVM), K-Nearest Neighborhoods, and Gaussian processes classification outperformed other classifiers with a prediction accuracy of 97%. The Decision Tree classifier recorded the lowest performance with a prediction accuracy of 82%. Considering a trade-off between the model's accuracy and complexity, the classifier with higher accuracy associated with low training time complexity was the K-Nearest Neighborhoods achieving an accuracy of 97%, 0.024 s of training time, 0.042 s of testing time, and a memory storage of 0.04 megabytes. Nevertheless, the SVM achieved the same accuracy of 97% yet consumed much lower memory storage of 0.004 megabytes and a testing time of 0.01 s. Although the K-NN recorded the lowest training time, the SVM can be considered the best model for the ID-prediction classification problem.
引用
收藏
页数:24
相关论文
共 50 条
  • [21] Comparative study of statistical and machine learning methods for streetcar incident duration analysis
    Zhu, Siying
    INTERNATIONAL JOURNAL OF CRASHWORTHINESS, 2024, 29 (01) : 16 - 21
  • [22] Classifying and Forecasting Traffic Incident Duration Using Various Machine Learning Techniques
    Rahmat-Ullah, Zakiya
    Alsmadi, Sara
    Hamad, Khaled
    2021 14TH INTERNATIONAL CONFERENCE ON DEVELOPMENTS IN ESYSTEMS ENGINEERING (DESE), 2021, : 388 - 393
  • [23] Comparative Evaluation of Some Quality Characteristics of Sunflower Oilseeds (Helianthus annuus L.) Through Machine Learning Classifiers
    cetin, Necati
    Karaman, Kevser
    Beyzi, Erman
    Saglam, Cevdet
    Demirel, Bahadir
    FOOD ANALYTICAL METHODS, 2021, 14 (08) : 1666 - 1681
  • [24] Predicting novel microRNA: a comprehensive comparison of machine learning approaches
    Stegmayer, Georgina
    Di Persia, Leandro E.
    Rubiolo, Mariano
    Gerard, Matias
    Pividori, Milton
    Yones, Cristian
    Bugnon, Leandro A.
    Rodriguez, Tadeo
    Raad, Jonathan
    Milone, Diego H.
    BRIEFINGS IN BIOINFORMATICS, 2019, 20 (05) : 1607 - 1620
  • [25] Predicting the Duration of Traffic Incidents for Sydney Greater Metropolitan Area using Machine Learning Methods
    Grigorev, Artur
    Shafiei, Sajjad
    Grzybowska, Hanna
    Mihaita, Adriana-Simona
    INTERNATIONAL JOURNAL OF INTELLIGENT TRANSPORTATION SYSTEMS RESEARCH, 2024, : 104 - 125
  • [26] Predicting Earthquake-Induced Soil Liquefaction Based on Machine Learning Classifiers: A Comparative Multi-Dataset Study
    Guo, Hongwei
    Zhuang, Xiaoying
    Chen, Jianfeng
    Zhu, Hehua
    INTERNATIONAL JOURNAL OF COMPUTATIONAL METHODS, 2022, 19 (08)
  • [27] A Machine Learning Approach to Predicting Case Duration for Robot-Assisted Surgery
    Zhao, Beiqun
    Waterman, Ruth S.
    Urman, Richard D.
    Gabriel, Rodney A.
    JOURNAL OF MEDICAL SYSTEMS, 2019, 43 (02)
  • [28] Machine Learning for Dengue Outbreak Prediction: A Performance Evaluation of Different Prominent Classifiers
    Iqbal, Naiyar
    Islam, Mohammad
    INFORMATICA-JOURNAL OF COMPUTING AND INFORMATICS, 2019, 43 (03): : 363 - 371
  • [29] Predicting pre-service teachers’ computational thinking skills using machine learning classifiers
    Hao-Yue Jin
    Maria Cutumisu
    Education and Information Technologies, 2023, 28 : 11447 - 11467
  • [30] Predicting Perovskite Performance with Multiple Machine-Learning Algorithms
    Li, Ruoyu
    Deng, Qin
    Tian, Dong
    Zhu, Daoye
    Lin, Bin
    CRYSTALS, 2021, 11 (07)