Comparative transcriptome analysis provides novel insights into molecular response of salt-tolerant and sensitive polyembryonic mango genotypes to salinity stress at seedling stage

被引:7
|
作者
Perveen, Nusrat [1 ]
Dinesh, M. R. [1 ]
Sankaran, M. [1 ]
Ravishankar, K. V. [2 ]
Krishnajee, Hara Gopal [2 ]
Hanur, Vageeshbabu S. [2 ]
Alamri, Saud [3 ]
Kesawat, Mahipal Singh [4 ]
Irfan, Mohammad [4 ]
机构
[1] Indian Inst Hort Res, Div Fruit Crops, ICAR, Hesaraghatta Lakepost, Bengaluru, Karnataka, India
[2] Indian Inst Hort Res, Div Biotechnol, ICAR, Hesaraghatta Lakepost, Bengaluru, Karnataka, India
[3] King Saud Univ, Coll Sci, Dept Bot & Microbiol, Riyadh, Saudi Arabia
[4] Seoul Natl Univ, Sch Biol Sci, Seoul, South Korea
来源
关键词
mango; transcriptome; salinity stress; RNA-Seq; polyembryony; Mylepelian; Turpentine; SOS pathway; ANALYSIS REVEALS; GENES; IDENTIFICATION; EXPRESSION; PLANT; MECHANISMS; PROTEINS; ROOTS; PROTEOME; ROLES;
D O I
10.3389/fpls.2023.1152485
中图分类号
Q94 [植物学];
学科分类号
071001 ;
摘要
IntroductionIncreased soil salinity in the recent years has adversely affected the productivity of mango globally. Extending the cultivation of mango in salt affected regions warrants the use of salinity tolerant/resistant rootstocks. However, the lack of sufficient genomic and transcriptomic information impedes comprehensive research at the molecular level. MethodWe employed RNA sequencing-based transcriptome analysis to gain insight into molecular response to salt stress by using two polyembryonic mango genotypes with contrasting response to salt stress viz., salt tolerant Turpentine and salt susceptible Mylepelian. ResultsRNA sequencing by Novaseq6000 resulted in a total of 2795088, 17535948, 7813704 and 5544894 clean reads in Mylepelian treated (MT), Mylepelian control (MC), Turpentine treated (TT) and Turpentine control (TC) respectively. In total, 7169 unigenes annotated against all the five public databases, including NR, NT, PFAM, KOG, Swissport, KEGG and GO. Further, maximum number of differentially expressed genes were found between MT and MC (2106) followed by MT vs TT (1158) and TT and TC (587). The differentially expressed genes under different treatment levels included transcription factors (bZIP, NAC, bHLH), genes involved in Calcium-dependent protein kinases (CDPKs), ABA biosynthesis, Photosynthesis etc. Expression of few of these genes was experimentally validated through quantitative real-time PCR (qRT-PCR) and contrasting expression pattern of Auxin Response Factor 2 (ARF2), Late Embryogenesis Abundant (LEA) and CDPK genes were observed between Turpentine and Mylepelian. DiscussionThe results of this study will be useful in understanding the molecular mechanism underlying salt tolerance in mango which can serve as valuable baseline information to generate new targets in mango breeding for salt tolerance.
引用
收藏
页数:17
相关论文
共 50 条
  • [1] Comparative transcriptome analysis reveals molecular response to salinity stress of salt-tolerant and sensitive genotypes of indica rice at seedling stage
    Wang, Jun
    Zhu, Jinyan
    Zhang, Yadong
    Fan, Fangjun
    Li, Wenqi
    Wang, Fangquan
    Zhong, Weigong
    Wang, Cailin
    Yang, Jie
    SCIENTIFIC REPORTS, 2018, 8
  • [2] Comparative transcriptome analysis reveals molecular response to salinity stress of salt-tolerant and sensitive genotypes of indica rice at seedling stage
    Jun Wang
    Jinyan Zhu
    Yadong Zhang
    Fangjun Fan
    Wenqi Li
    Fangquan Wang
    Weigong Zhong
    Cailin Wang
    Jie Yang
    Scientific Reports, 8
  • [3] Comparative Transcriptome Analysis of Salt-Tolerant and -Sensitive Soybean Cultivars under Salt Stress
    Cheng, Ye
    Cheng, Xiangqiang
    Wei, Kai
    Wang, Yan
    INTERNATIONAL JOURNAL OF MOLECULAR SCIENCES, 2024, 25 (18)
  • [4] Transcriptome Analysis Reveals Complex Defensive Mechanisms in Salt-Tolerant and Salt-Sensitive Shrub Willow Genotypes under Salinity Stress
    Sui, Dezong
    Wang, Baosong
    INTERNATIONAL JOURNAL OF GENOMICS, 2020, 2020
  • [5] Differential Response of Salt-Tolerant and Susceptible Barley Genotypes to Salinity Stress
    Tavakoli, F.
    Vazan, S.
    Moradi, F.
    Shiran, B.
    Sorkheh, K.
    JOURNAL OF CROP IMPROVEMENT, 2010, 24 (03) : 244 - 260
  • [6] Comparative transcriptome analysis of root types in salt tolerant and sensitive rice varieties in response to salinity stress
    Cartagena, Joyce A.
    Yao, Yao
    Mitsuya, Shiro
    Tsuge, Takashi
    PHYSIOLOGIA PLANTARUM, 2021, 173 (04) : 1629 - 1642
  • [7] Comparative transcriptome analysis of gene responses of salt-tolerant and salt-sensitive rice cultivars to salt stress
    Xin Fang
    Junjie Mo
    Hongkai Zhou
    Xuefeng Shen
    Yuling Xie
    Jianghuan Xu
    Shan Yang
    Scientific Reports, 13
  • [8] Comparative transcriptome analysis of gene responses of salt-tolerant and salt-sensitive rice cultivars to salt stress
    Fang, Xin
    Mo, Junjie
    Zhou, Hongkai
    Shen, Xuefeng
    Xie, Yuling
    Xu, Jianghuan
    Yang, Shan
    SCIENTIFIC REPORTS, 2023, 13 (01)
  • [9] Salt-Stress Response Mechanisms Using de Novo Transcriptome Sequencing of Salt-Tolerant and Sensitive Corchorus spp. Genotypes
    Yang, Zemao
    Lu, Ruike
    Dai, Zhigang
    Yan, An
    Tang, Qing
    Cheng, Chaohua
    Xu, Ying
    Yang, Wenting
    Su, Jianguang
    GENES, 2017, 8 (09)
  • [10] Comparative Transcriptome Analysis Reveals Molecular Responses of Salinity Tolerance in Salt-Tolerant Indica Rice Landrace Korgut
    Negi, Yogesh
    Karle, Suhas Balasaheb
    Manohara, K. K.
    Kumar, Kundan
    JOURNAL OF PLANT GROWTH REGULATION, 2024, 44 (4) : 1678 - 1694