EXPLICIT AND EFFICIENT ERROR ESTIMATION FOR CONVEX MINIMIZATION PROBLEMS

被引:6
作者
Bartels, Soren [1 ]
Kaltenbach, Alex [2 ]
机构
[1] Albert Ludwigs Univ Freiburg, Inst Appl Math, Hermann Herder Str 10, D-79104 Freiburg, Germany
[2] Albert Ludwigs Univ Freiburg, Inst Appl Math, Ernst Zermelo Str 1, D-79104 Freiburg, Germany
关键词
Convex minimization; finite elements; non-conforming methods; a posteriori error estimates; adaptive mesh refinement; p-Dirichlet problem; optimal design problem; FINITE-ELEMENT-METHOD; NONCONFORMING FEMS; APPROXIMATION; CONVERGENCE; OPTIMALITY;
D O I
10.1090/mcom/3821
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We combine a systematic approach for deriving general a posteri-ori error estimates for convex minimization problems based on convex duality relations with a recently derived generalized Marini formula. The a posteriori error estimates are quasi constant-free and apply to a large class of variational problems including the p-Dirichlet problem, as well as degenerate minimiza-tion, obstacle and image de-noising problems. In addition, these a posteriori error estimates are based on a comparison to a given non-conforming finite element solution. For the p-Dirichlet problem, these a posteriori error bounds are equivalent to residual type a posteriori error bounds and, hence, reliable and efficient.
引用
收藏
页码:2247 / 2279
页数:33
相关论文
共 53 条
[1]   A posteriori error estimation in finite element analysis [J].
Ainsworth, M ;
Oden, JT .
COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 1997, 142 (1-2) :1-88
[2]  
Aitken A. C., 1927, P ROY SOC EDINB, V46, P289, DOI DOI 10.1017/S0370164600022070
[3]   An Elementary Method of Deriving A Posteriori Error Equalities and Estimates for Linear Partial Differential Equations [J].
Anjam, Immanuel ;
Pauly, Dirk .
COMPUTATIONAL METHODS IN APPLIED MATHEMATICS, 2019, 19 (02) :311-322
[4]  
[Anonymous], 2000, Applied Mathematical Sciences, DOI DOI 10.1007/978-1-4612-1188-4
[5]   MIXED AND NONCONFORMING FINITE-ELEMENT METHODS - IMPLEMENTATION, POSTPROCESSING AND ERROR-ESTIMATES [J].
ARNOLD, DN ;
BREZZI, F .
ESAIM-MATHEMATICAL MODELLING AND NUMERICAL ANALYSIS-MODELISATION MATHEMATIQUE ET ANALYSE NUMERIQUE, 1985, 19 (01) :7-32
[6]  
Balay S., 2019, PETSC WEB PAGE
[7]   FINITE-ELEMENT APPROXIMATION OF THE P-LAPLACIAN [J].
BARRETT, JW ;
LIU, WB .
MATHEMATICS OF COMPUTATION, 1993, 61 (204) :523-537
[8]  
Bartels S., 2015, Numerical methods for nonlinear partial differential equations, DOI [10.1007/978-3-319-13797-1, DOI 10.1007/978-3-319-13797-1]
[9]   Error estimates for total-variation regularized minimization problems with singular dual solutions [J].
Bartels, Soeren ;
Kaltenbach, Alex .
NUMERISCHE MATHEMATIK, 2022, 152 (04) :881-906
[10]   Nonconforming discretizations of convex minimization problems and precise relations to mixed methods [J].
Bartels, Soeren .
COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2021, 93 :214-229