Medications for specific phenotypes of heart failure with preserved ejection fraction classified by a machine learning-based clustering model

被引:15
作者
Sotomi, Yohei [1 ]
Hikoso, Shungo [1 ]
Nakatani, Daisaku [1 ]
Okada, Katsuki [1 ,2 ]
Dohi, Tomoharu [1 ]
Sunaga, Akihiro [1 ]
Kida, Hirota [1 ]
Sato, Taiki [1 ]
Matsuoka, Yuki [1 ]
Kitamura, Tetsuhisa [3 ]
Komukai, Sho [4 ]
Seo, Masahiro [5 ]
Yano, Masamichi [6 ]
Hayashi, Takaharu [7 ]
Nakagawa, Akito [8 ]
Nakagawa, Yusuke [9 ]
Tamaki, Shunsuke [10 ]
Ohtani, Tomohito [1 ]
Yasumura, Yoshio [8 ]
Yamada, Takahisa [5 ]
Sakata, Yasushi [1 ]
OCVC- Heart Failure Investigator
机构
[1] Osaka Univ, Grad Sch Med, Dept Cardiovasc Med, Suita 5650871, Japan
[2] Osaka Univ, Grad Sch Med, Dept Med Informat, Suita, Japan
[3] Osaka Univ, Grad Sch Med, Dept Social & Environm Med, Suita, Japan
[4] Osaka Univ, Grad Sch Med, Dept Integrated Med, Div Biomed Stat, Suita, Japan
[5] Osaka Gen Med Ctr, Div Cardiol, Osaka, Japan
[6] Osaka Rosai Hosp, Div Cardiol, Sakai, Japan
[7] Osaka Police Hosp, Cardiovasc Div, Osaka, Japan
[8] Amagasaki Chuo Hosp, Div Cardiol, Amagasaki, Japan
[9] Kawanishi City Med Ctr, Div Cardiol, Kawanishi, Japan
[10] Rinku Gen Med Ctr, Dept Cardiovasc Med, Izumisano, Japan
关键词
Heart Failure; SPIRONOLACTONE; OUTCOMES; MORTALITY; PRESSURE;
D O I
10.1136/heartjnl-2022-322181
中图分类号
R5 [内科学];
学科分类号
1002 ; 100201 ;
摘要
ObjectiveOur previously established machine learning-based clustering model classified heart failure with preserved ejection fraction (HFpEF) into four distinct phenotypes. Given the heterogeneous pathophysiology of HFpEF, specific medications may have favourable effects in specific phenotypes of HFpEF. We aimed to assess effectiveness of medications on clinical outcomes of the four phenotypes using a real-world HFpEF registry dataset. MethodsThis study is a posthoc analysis of the PURSUIT-HFpEF registry, a prospective, multicentre, observational study. We evaluated the clinical effectiveness of the following four types of postdischarge medication in the four different phenotypes: angiotensin-converting enzyme inhibitors (ACEi) or angiotensin-receptor blockers (ARB), beta blockers, mineralocorticoid-receptor antagonists (MRA) and statins. The primary endpoint of this study was a composite of all-cause death and heart failure hospitalisation. ResultsOf 1231 patients, 1100 (83 (IQR 77, 87) years, 604 females) were eligible for analysis. Median follow-up duration was 734 (398, 1108) days. The primary endpoint occurred in 528 patients (48.0%). Cox proportional hazard models with inverse-probability-of-treatment weighting showed the following significant effectiveness of medication on the primary endpoint: MRA for phenotype 2 (weighted HR (wHR) 0.40, 95% CI 0.21 to 0.75, p=0.005); ACEi or ARB for phenotype 3 (wHR 0.66 0.48 to 0.92, p=0.014) and statin therapy for phenotype 3 (wHR 0.43 (0.21 to 0.88), p=0.020). No other medications had significant treatment effects in the four phenotypes. ConclusionsMachine learning-based clustering may have the potential to identify populations in which specific medications may be effective. This study suggests the effectiveness of MRA, ACEi or ARB and statin for specific phenotypes of HFpEF.
引用
收藏
页码:1231 / 1240
页数:10
相关论文
共 50 条
[31]   Clustering of Heart Failure Phenotypes in Johannesburg Using Unsupervised Machine Learning [J].
Mpanya, Dineo ;
Celik, Turgay ;
Klug, Eric ;
Ntsinjana, Hopewell .
APPLIED SCIENCES-BASEL, 2023, 13 (03)
[32]   The heart in sickle cell disease, a model for heart failure with preserved ejection fraction [J].
Wood, John C. .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2016, 113 (35) :9670-9672
[33]   Identification of novel pheno-groups in heart failure with preserved ejection fraction using machine learning [J].
Hedman, Asa K. ;
Hage, Camilla ;
Sharma, Anil ;
Brosnan, Mary Julia ;
Buckbinder, Leonard ;
Gan, Li-Ming ;
Shah, Sanjiv J. ;
Linde, Cecilia M. ;
Donal, Erwan ;
Daubert, Jean-Claude ;
Malarstig, Anders ;
Ziemek, Daniel ;
Lund, Lars .
HEART, 2020, 106 (05) :342-349
[34]   Characterization of a robust mouse model of heart failure with preserved ejection fraction [J].
Matsiukevich, Dzmitry ;
Kovacs, Attila ;
Li, Tiandao ;
Kokkonen-Simon, Kristen ;
Matkovich, Scot J. ;
Oladipupo, Sunday S. ;
Ornitz, David M. .
AMERICAN JOURNAL OF PHYSIOLOGY-HEART AND CIRCULATORY PHYSIOLOGY, 2023, 325 (02) :H203-H231
[35]   Chronotropic Incompetence in a Rat Model of Heart Failure With Preserved Ejection Fraction [J].
Cho, Jae Hyung ;
Grigorian, Lilian ;
Rogers, Russell G. ;
Goldhaber, Joshua I. ;
Marban, Eduardo ;
Cingolani, Eugenio .
CIRCULATION, 2017, 136
[36]   Phenotypic clustering of heart failure with preserved ejection fraction reveals different rates of hospitalization [J].
Casebeer, Adrianne ;
Horter, Libby ;
Hayden, Jennifer ;
Simmons, Jeff ;
Evers, Thomas .
JOURNAL OF CARDIOVASCULAR MEDICINE, 2021, 22 (01) :45-52
[37]   Preload dependence in an animal model of mild heart failure with preserved ejection fraction (HFpEF) [J].
Jacobsen, Jens C. B. ;
Schubert, Irene H. ;
Larsen, Karin ;
Terzic, Dijana ;
Thisted, Louise ;
Thomsen, Morten B. .
ACTA PHYSIOLOGICA, 2024, 240 (03)
[38]   Epidemiology, Clinical Characteristics and Cause-specific Outcomes in Heart Failure with Preserved Ejection Fraction [J].
Kapelios, Chris J. ;
Shahim, Bahira ;
Lund, Lars H. ;
Savarese, Gianluigi .
CARDIAC FAILURE REVIEW, 2023, 9
[39]   Heart failure with preserved and reduced ejection fraction: Different phenotypes in old-elderly patients? [J].
Inmaculada Paez-Rubio, Maria ;
Javier Carrasco-Sanchez, Francisco ;
Escobar-Cervantes, Carlos ;
Sanchez-Gomez, Nancy ;
Luis Santiago-Ruiz, Jose ;
Yebra-Yebra, Miguel ;
Manzano, Luis .
EUROPEAN JOURNAL OF INTERNAL MEDICINE, 2013, 24 (04) :346-348
[40]   Association of Neighborhood and Environmental Factors With Clinical Phenotypes and Outcomes in Heart Failure With Preserved Ejection Fraction [J].
Liem, David A. ;
Silva, Hitalo ;
Romero, Erick ;
Rocha, Paulo ;
Acevedo, Pablo E. ;
Izu, Miki R. ;
Ballal, Aditya ;
Soroya, Mohammad ;
Lopez, Javier E. ;
Nuno, Miriam A. ;
Quazi, Arnib ;
Mukherjee, Chitra ;
Linklater, Wayne ;
Ebong, Imo ;
Zhang, Xiao-Dong ;
Izu, Leighton T. ;
Sirish, Padmini ;
Chiamvimonvat, Nipavan ;
Cadeiras, Martin .
CIRCULATION RESEARCH, 2024, 135 (01) :155-158