Medications for specific phenotypes of heart failure with preserved ejection fraction classified by a machine learning-based clustering model

被引:12
|
作者
Sotomi, Yohei [1 ]
Hikoso, Shungo [1 ]
Nakatani, Daisaku [1 ]
Okada, Katsuki [1 ,2 ]
Dohi, Tomoharu [1 ]
Sunaga, Akihiro [1 ]
Kida, Hirota [1 ]
Sato, Taiki [1 ]
Matsuoka, Yuki [1 ]
Kitamura, Tetsuhisa [3 ]
Komukai, Sho [4 ]
Seo, Masahiro [5 ]
Yano, Masamichi [6 ]
Hayashi, Takaharu [7 ]
Nakagawa, Akito [8 ]
Nakagawa, Yusuke [9 ]
Tamaki, Shunsuke [10 ]
Ohtani, Tomohito [1 ]
Yasumura, Yoshio [8 ]
Yamada, Takahisa [5 ]
Sakata, Yasushi [1 ]
OCVC- Heart Failure Investigator
机构
[1] Osaka Univ, Grad Sch Med, Dept Cardiovasc Med, Suita 5650871, Japan
[2] Osaka Univ, Grad Sch Med, Dept Med Informat, Suita, Japan
[3] Osaka Univ, Grad Sch Med, Dept Social & Environm Med, Suita, Japan
[4] Osaka Univ, Grad Sch Med, Dept Integrated Med, Div Biomed Stat, Suita, Japan
[5] Osaka Gen Med Ctr, Div Cardiol, Osaka, Japan
[6] Osaka Rosai Hosp, Div Cardiol, Sakai, Japan
[7] Osaka Police Hosp, Cardiovasc Div, Osaka, Japan
[8] Amagasaki Chuo Hosp, Div Cardiol, Amagasaki, Japan
[9] Kawanishi City Med Ctr, Div Cardiol, Kawanishi, Japan
[10] Rinku Gen Med Ctr, Dept Cardiovasc Med, Izumisano, Japan
关键词
Heart Failure; SPIRONOLACTONE; OUTCOMES; MORTALITY; PRESSURE;
D O I
10.1136/heartjnl-2022-322181
中图分类号
R5 [内科学];
学科分类号
1002 ; 100201 ;
摘要
ObjectiveOur previously established machine learning-based clustering model classified heart failure with preserved ejection fraction (HFpEF) into four distinct phenotypes. Given the heterogeneous pathophysiology of HFpEF, specific medications may have favourable effects in specific phenotypes of HFpEF. We aimed to assess effectiveness of medications on clinical outcomes of the four phenotypes using a real-world HFpEF registry dataset. MethodsThis study is a posthoc analysis of the PURSUIT-HFpEF registry, a prospective, multicentre, observational study. We evaluated the clinical effectiveness of the following four types of postdischarge medication in the four different phenotypes: angiotensin-converting enzyme inhibitors (ACEi) or angiotensin-receptor blockers (ARB), beta blockers, mineralocorticoid-receptor antagonists (MRA) and statins. The primary endpoint of this study was a composite of all-cause death and heart failure hospitalisation. ResultsOf 1231 patients, 1100 (83 (IQR 77, 87) years, 604 females) were eligible for analysis. Median follow-up duration was 734 (398, 1108) days. The primary endpoint occurred in 528 patients (48.0%). Cox proportional hazard models with inverse-probability-of-treatment weighting showed the following significant effectiveness of medication on the primary endpoint: MRA for phenotype 2 (weighted HR (wHR) 0.40, 95% CI 0.21 to 0.75, p=0.005); ACEi or ARB for phenotype 3 (wHR 0.66 0.48 to 0.92, p=0.014) and statin therapy for phenotype 3 (wHR 0.43 (0.21 to 0.88), p=0.020). No other medications had significant treatment effects in the four phenotypes. ConclusionsMachine learning-based clustering may have the potential to identify populations in which specific medications may be effective. This study suggests the effectiveness of MRA, ACEi or ARB and statin for specific phenotypes of HFpEF.
引用
收藏
页码:1231 / 1240
页数:10
相关论文
共 50 条
  • [1] Phenomapping of patients with heart failure with preserved ejection fraction using machine learning-based unsupervised cluster analysis
    Segar, Matthew W.
    Patel, Kershaw V.
    Ayers, Colby
    Basit, Mujeeb
    Tang, W. H. Wilson
    Willett, Duwayne
    Berry, Jarett
    Grodin, Justin L.
    Pandey, Ambarish
    EUROPEAN JOURNAL OF HEART FAILURE, 2020, 22 (01) : 148 - 158
  • [2] Pathophysiological insights into machine learning-based subphenotypes of acute heart failure with preserved ejection fraction
    Sotomi, Yohei
    Tamaki, Shunsuke
    Hikoso, Shungo
    Nakatani, Daisaku
    Okada, Katsuki
    Dohi, Tomoharu
    Sunaga, Akihiro
    Kida, Hirota
    Sato, Taiki
    Matsuoka, Yuki
    Sakamoto, Daisuke
    Kitamura, Tetsuhisa
    Komukai, Sho
    Seo, Masahiro
    Yano, Masamichi
    Hayashi, Takaharu
    Nakagawa, Akito
    Nakagawa, Yusuke
    Ohtani, Tomohito
    Yasumura, Yoshio
    Yamada, Takahisa
    Sakata, Yasushi
    HEART, 2024, 110 (06) : 441 - 447
  • [3] Biological Phenotypes of Heart Failure With Preserved Ejection Fraction
    Lewis, Gavin A.
    Schelbert, Erik B.
    Williams, Simon G.
    Cunnington, Colin
    Ahmed, Fozia
    McDonagh, Theresa A.
    Miller, Christopher A.
    JOURNAL OF THE AMERICAN COLLEGE OF CARDIOLOGY, 2017, 70 (17) : 2186 - 2200
  • [4] Advances in Machine Learning Approaches to Heart Failure with Preserved Ejection Fraction
    Ahmad, Faraz S.
    Luo, Yuan
    Wehbe, Ramsey M.
    Thomas, James D.
    Shah, Sanjiv J.
    HEART FAILURE CLINICS, 2022, 18 (02) : 287 - 300
  • [5] Specific phenotypes of heart failure with preserved/reduced ejection fraction according to Body Mass Index
    Matsushita, Kenichi
    Harada, Kazumasa
    Jimba, Takahiro
    Kohno, Takashi
    Nakano, Hiroki
    Kitano, Daisuke
    Takei, Makoto
    Kohsaka, Shun
    Yoshino, Hideaki
    Yamamoto, Takeshi
    Nagao, Ken
    Takayama, Morimasa
    MINERVA CARDIOLOGY AND ANGIOLOGY, 2025,
  • [6] Heart failure with preserved ejection fraction and its different phenotypes
    Camafort, Miguel
    Suarez-Lombrana, Ana
    Coloma, Emmanuel
    REVISTA DE LA FEDERACION ARGENTINA DE CARDIOLOGIA, 2023, 52 (03): : 111 - 116
  • [7] Heart failure with preserved ejection fraction: A clustering approach to a heterogenous syndrome
    Schrub, Florian
    Oger, Emmanuel
    Bidaut, Auriane
    Hage, Camilla
    Charton, Marion
    Daubert, Jean Claude
    Leclercq, Chrtistophe
    Linde, Cecila
    Lund, Lars
    Donal, Erwan
    ARCHIVES OF CARDIOVASCULAR DISEASES, 2020, 113 (6-7) : 381 - 390
  • [8] Influence of ejection fraction on cause-specific mortality in heart failure with preserved ejection fraction
    Bajaj, Navkaranbir S.
    Claggett, Brian
    Lewis, Eldrin F.
    Desai, Akshay S.
    Fang, James C.
    O'Meara, Eileen
    Shah, Sanjiv J.
    Sweitzer, Nancy K.
    Fleg, Jerome L.
    Pitt, Bertram
    Rouleau, Jean L.
    Finn, Peter
    Pfeffer, Marc A.
    Solomon, Scott D.
    EUROPEAN JOURNAL OF HEART FAILURE, 2018, 20 (04) : 815 - +
  • [9] Machine Learning Prediction of Mortality and Hospitalization in Heart Failure With Preserved Ejection Fraction
    Angraal, Suveen
    Mortazavi, Bobak J.
    Gupta, Aakriti
    Khera, Rohan
    Ahmad, Tariq
    Desai, Nihar R.
    Jacoby, Daniel L.
    Masoudi, Frederick A.
    Spertus, John A.
    Krumholz, Harlan M.
    JACC-HEART FAILURE, 2020, 8 (01) : 12 - 21
  • [10] Redefining heart failure phenotypes based on ejection fraction
    Campbell, Ross T.
    Petrie, Mark C.
    McMurray, John J. V.
    EUROPEAN JOURNAL OF HEART FAILURE, 2018, 20 (12) : 1634 - 1635