Nanocomposite Bioprinting for Tissue Engineering Applications

被引:28
|
作者
Loukelis, Konstantinos [1 ]
Helal, Zina A. [2 ]
Mikos, Antonios G. [2 ]
Chatzinikolaidou, Maria [1 ,3 ]
机构
[1] Univ Crete, Dept Mat Sci & Technol, Iraklion 70013, Greece
[2] Rice Univ, Dept Bioengn, Houston, TX 77030 USA
[3] Fdn Res & Technol Hellas FORTH, Inst Elect Struct & Laser IESL, Iraklion 70013, Greece
基金
美国国家卫生研究院; 美国国家科学基金会;
关键词
composite; extrusion; 3D printing; stereolithography; inkjet; bone; cartilage; cardiovascular; ON-A-CHIP; CARTILAGE TISSUE; BIOACTIVE GLASS; EXTRACELLULAR-MATRIX; OSTEOGENIC DIFFERENTIATION; ARTICULAR-CARTILAGE; CARBON NANOTUBES; POTENTIAL BIOINK; HYALURONIC-ACID; GRAPHENE OXIDE;
D O I
10.3390/gels9020103
中图分类号
O63 [高分子化学(高聚物)];
学科分类号
070305 ; 080501 ; 081704 ;
摘要
Bioprinting aims to provide new avenues for regenerating damaged human tissues through the controlled printing of live cells and biocompatible materials that can function therapeutically. Polymeric hydrogels are commonly investigated ink materials for 3D and 4D bioprinting applications, as they can contain intrinsic properties relative to those of the native tissue extracellular matrix and can be printed to produce scaffolds of hierarchical organization. The incorporation of nanoscale material additives, such as nanoparticles, to the bulk of inks, has allowed for significant tunability of the mechanical, biological, structural, and physicochemical material properties during and after printing. The modulatory and biological effects of nanoparticles as bioink additives can derive from their shape, size, surface chemistry, concentration, and/or material source, making many configurations of nanoparticle additives of high interest to be thoroughly investigated for the improved design of bioactive tissue engineering constructs. This paper aims to review the incorporation of nanoparticles, as well as other nanoscale additive materials, to printable bioinks for tissue engineering applications, specifically bone, cartilage, dental, and cardiovascular tissues. An overview of the various bioinks and their classifications will be discussed with emphasis on cellular and mechanical material interactions, as well the various bioink formulation methodologies for 3D and 4D bioprinting techniques. The current advances and limitations within the field will be highlighted.
引用
收藏
页数:30
相关论文
共 50 条
  • [41] Application and development of 3D bioprinting in cartilage tissue engineering
    Li, Mingyang
    Sun, Daocen
    Zhang, Juan
    Wang, Yanmei
    Wei, Qinghua
    Wang, Yanen
    BIOMATERIALS SCIENCE, 2022, 10 (19) : 5430 - 5458
  • [42] Review of alginate-based hydrogel bioprinting for application in tissue engineering
    Rastogi, Prasansha
    Kandasubramanian, Balasubramanian
    BIOFABRICATION, 2019, 11 (04)
  • [43] Advances in tissue engineering and 3D bioprinting for corneal regeneration
    Monostori, Tamas
    Szucs, Diana
    Lovaszi, Borbala
    Kemeny, Lajos
    Vereb, Zoltan
    INTERNATIONAL JOURNAL OF BIOPRINTING, 2024, 10 (02) : 107 - 130
  • [44] Human gelatin-based composite hydrogels for osteochondral tissue engineering and their adaptation into bioinks for extrusion, inkjet, and digital light processing bioprinting
    Bedell, Matthew L.
    Torres, Angelica L.
    Hogan, Katie J.
    Wang, Ziwen
    Wang, Bonnie
    Melchiorri, Anthony J.
    Grande-Allen, K. Jane
    Mikos, Antonios G.
    BIOFABRICATION, 2022, 14 (04)
  • [45] Agarose-Based Hydrogels as Suitable Bioprinting Materials for Tissue Engineering
    Lopez-Marcial, Gabriel R.
    Zeng, Anne Y.
    Osuna, Carlos
    Dennis, Joseph
    Garcia, Jeannette M.
    O'Connell, Grace D.
    ACS BIOMATERIALS SCIENCE & ENGINEERING, 2018, 4 (10): : 3610 - 3616
  • [46] A comprehensive review on nanocomposite biomaterials based on gelatin for bone tissue engineering
    Abar, Elaheh Salehi
    Vandghanooni, Somayeh
    Torab, Ali
    Jaymand, Mehdi
    Eskandani, Morteza
    INTERNATIONAL JOURNAL OF BIOLOGICAL MACROMOLECULES, 2024, 254
  • [47] An Injectable Nanocomposite IPN Hydrogel Based on Gelatin Methacrylate/Alginate/COF for Tissue Engineering Applications
    Saleki, Samin
    Khorasani, Saied Nouri
    Khalili, Shahla
    Hafezi, Mahshid
    Najarzadegan, Mahsa
    Molaviyan, Mohammad Reza
    Dinari, Mohammad
    Kakapour, Ali
    MACROMOLECULAR MATERIALS AND ENGINEERING, 2024, 309 (06)
  • [48] Graphene and its hybrid nanocomposite: A Metamorphoses elevation in the field of tissue engineering
    Singh, Rajesh
    Rawat, Hemant
    Kumar, Ashwani
    Gandhi, Yashika
    Kumar, Vijay
    Mishra, Sujeet K.
    Narasimhaji, Ch Venkata
    HELIYON, 2024, 10 (13)
  • [49] 3D printable sustainable hydrogel formulations for tissue engineering applications
    Porwal, Sejal
    Sridhar, Sathvik Belagodu
    Talath, Sirajunisa
    Wali, Adil Farooq
    Warsi, Musarrat Husain
    Malviya, Rishabha
    JOURNAL OF DRUG DELIVERY SCIENCE AND TECHNOLOGY, 2024, 101
  • [50] Investigation of physical, mechanical and biological properties of polyhydroxybutyrate-chitosan/graphene oxide nanocomposite scaffolds for bone tissue engineering applications
    Motiee, Elham-Sadat
    Karbasi, Saeed
    Bidram, Elham
    Sheikholeslam, Mohammadali
    INTERNATIONAL JOURNAL OF BIOLOGICAL MACROMOLECULES, 2023, 247