1.5D non-LTE spectral synthesis of a 3D filament and prominence simulation

被引:11
|
作者
Jenkins, J. M. [1 ]
Osborne, C. M. J. [2 ]
Keppens, R. [1 ]
机构
[1] Katholieke Univ Leuven, Ctr Math Plasma Astrophys, Celestijnenlaan 200B, B-3001 Leuven, Belgium
[2] Univ Glasgow, SUPA Sch Phys & Astron, Glasgow, Scotland
基金
欧洲研究理事会;
关键词
Sun: atmosphere; Sun:; filaments; prominences; Sun: corona; radiative transfer; magnetohydrodynamics (MHD); MULTILEVEL RADIATIVE-TRANSFER; RAYLEIGH-TAYLOR INSTABILITY; PARTIAL FREQUENCY REDISTRIBUTION; MG II H; FINE-STRUCTURE; CYLINDRICAL THREADS; INCIDENT RADIATION; SOLAR PROMINENCES; MAGNETIC EQUILIBRIUM; NUMERICAL SIMULATIONS;
D O I
10.1051/0004-6361/202244868
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
Context. Overly idealised representations of solar filaments and prominences in numerical simulations have long limited their morphological comparison against observations. Moreover, it is intrinsically difficult to convert simulation quantities into emergent intensity of characteristic, optically thick line cores and/or spectra that are commonly selected for observational study.Aims. In this paper, we demonstrate how the recently developed Lightweaver framework makes non-"local thermodynamic equilibrium' (NLTE) spectral synthesis feasible on a new 3D ab initio magnetohydrodynamic (MHD) filament-prominence simulation, in a post-processing step.Methods. We clarify the need to introduce filament-and prominent-specific Lightweaver boundary conditions that accurately model incident chromospheric radiation, and include a self-consistent and smoothly varying limb-darkening function. Results. Progressing from isothermal and isobaric models to the self-consistently generated stratifications within a fully 3D MHD filament-prominence simulation, we find excellent agreement between our 1.5D NLTE Lightweaver synthesis and a popular hydrogen H alpha proxy. We computed additional lines including Ca II 8542 alongside the more optically thick Ca II H & K & Mg II h & k lines, for which no comparable proxy exists, and we explore their formation properties within filament and prominence atmospheres.Conclusions. The versatility of the Lightweaver framework is demonstrated with this extension to 1.5D filament and prominence models, where each vertical column of the instantaneous 3D MHD state is spectrally analysed separately, without accounting for (important) multi-dimensional radiative effects. The general agreement found in the line core contrast of both observations and the Lightweaver-synthesised simulation further validates the current generation of solar filament and prominence models constructed numerically with MPI-AMRVAC.
引用
收藏
页数:18
相关论文
共 50 条
  • [41] 2D non-LTE modeling for axisymmetric winds -: Method and test cases
    Georgiev, L. N.
    Hillier, D. J.
    Zsargo, J.
    ASTRONOMY & ASTROPHYSICS, 2006, 458 (02) : 597 - 608
  • [42] DIRECT DETECTION OF THE HELICAL MAGNETIC FIELD GEOMETRY FROM 3D RECONSTRUCTION OF PROMINENCE KNOT TRAJECTORIES
    Zapior, Maciej
    Martinez-Gomez, David
    ASTROPHYSICAL JOURNAL, 2016, 817 (02)
  • [43] 3D non-LTE corrections for Li abundance and 6Li/7Li isotopic ratio in solar-type stars
    Harutyunyan, G.
    Steffen, M.
    Mott, A.
    Caffau, E.
    Israelian, G.
    Gonzalez Hernandez, J. I.
    Strassmeier, K. G.
    ASTRONOMY & ASTROPHYSICS, 2018, 618
  • [44] Non-LTE line formation of Fe in late-type stars - IV. Modelling of the solar centre-to-limb variation in 3D
    Lind, K.
    Amarsi, A. M.
    Asplund, M.
    Barklem, P. S.
    Bautista, M.
    Bergemann, M.
    Collet, R.
    Kiselman, D.
    Leenaarts, J.
    Pereira, T. M. D.
    MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 2017, 468 (04) : 4311 - 4322
  • [45] Multi-level 3D non-LTE computations of lithium lines in the metal-poor halo stars HD 140283 and HD 84937
    Asplund, A
    Carlsson, A
    Botnen, AV
    ASTRONOMY & ASTROPHYSICS, 2003, 399 (03): : L31 - L34
  • [46] An open-source, massively parallel code for non-LTE synthesis and inversion of spectral lines and Zeeman-induced Stokes profiles
    Socas-Navarro, H.
    de la Cruz Rodriguez, J.
    Asensio Ramos, A.
    Trujillo Bueno, J.
    Ruiz Cobo, B.
    ASTRONOMY & ASTROPHYSICS, 2015, 577
  • [47] Estimation of Solar Prominence Magnetic Fields Based on the Reconstructed 3D Trajectories of Prominence Knots
    Zapior, Maciej
    Rudawy, Pawel
    SOLAR PHYSICS, 2012, 280 (02) : 445 - 456
  • [48] 3D simulation of convection and spectral line formation in A-type stars
    Steffen, M
    Freytag, B
    Ludwig, HG
    PROCEEDINGS OF THE 13TH CAMBRIDGE WORKSHOP ON COOL STARS, STELLAR SYSTEMS AND THE SUN - PROCEEDINGS, VOLS 1 AND 2, 2005, 560 : 985 - 988
  • [49] Fast 2D non-LTE radiative modelling of prominences -: Numerical methods and benchmark results
    Leger, L.
    Chevallier, L.
    Paletou, F.
    ASTRONOMY & ASTROPHYSICS, 2007, 470 (01): : 1 - 9
  • [50] Non-thermal electrons from solar nanoflares In a 3D radiative MHD simulation
    Bakke, H.
    Frogner, L.
    Gudiksen, B., V
    ASTRONOMY & ASTROPHYSICS, 2018, 620