1.5D non-LTE spectral synthesis of a 3D filament and prominence simulation

被引:11
|
作者
Jenkins, J. M. [1 ]
Osborne, C. M. J. [2 ]
Keppens, R. [1 ]
机构
[1] Katholieke Univ Leuven, Ctr Math Plasma Astrophys, Celestijnenlaan 200B, B-3001 Leuven, Belgium
[2] Univ Glasgow, SUPA Sch Phys & Astron, Glasgow, Scotland
基金
欧洲研究理事会;
关键词
Sun: atmosphere; Sun:; filaments; prominences; Sun: corona; radiative transfer; magnetohydrodynamics (MHD); MULTILEVEL RADIATIVE-TRANSFER; RAYLEIGH-TAYLOR INSTABILITY; PARTIAL FREQUENCY REDISTRIBUTION; MG II H; FINE-STRUCTURE; CYLINDRICAL THREADS; INCIDENT RADIATION; SOLAR PROMINENCES; MAGNETIC EQUILIBRIUM; NUMERICAL SIMULATIONS;
D O I
10.1051/0004-6361/202244868
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
Context. Overly idealised representations of solar filaments and prominences in numerical simulations have long limited their morphological comparison against observations. Moreover, it is intrinsically difficult to convert simulation quantities into emergent intensity of characteristic, optically thick line cores and/or spectra that are commonly selected for observational study.Aims. In this paper, we demonstrate how the recently developed Lightweaver framework makes non-"local thermodynamic equilibrium' (NLTE) spectral synthesis feasible on a new 3D ab initio magnetohydrodynamic (MHD) filament-prominence simulation, in a post-processing step.Methods. We clarify the need to introduce filament-and prominent-specific Lightweaver boundary conditions that accurately model incident chromospheric radiation, and include a self-consistent and smoothly varying limb-darkening function. Results. Progressing from isothermal and isobaric models to the self-consistently generated stratifications within a fully 3D MHD filament-prominence simulation, we find excellent agreement between our 1.5D NLTE Lightweaver synthesis and a popular hydrogen H alpha proxy. We computed additional lines including Ca II 8542 alongside the more optically thick Ca II H & K & Mg II h & k lines, for which no comparable proxy exists, and we explore their formation properties within filament and prominence atmospheres.Conclusions. The versatility of the Lightweaver framework is demonstrated with this extension to 1.5D filament and prominence models, where each vertical column of the instantaneous 3D MHD state is spectrally analysed separately, without accounting for (important) multi-dimensional radiative effects. The general agreement found in the line core contrast of both observations and the Lightweaver-synthesised simulation further validates the current generation of solar filament and prominence models constructed numerically with MPI-AMRVAC.
引用
收藏
页数:18
相关论文
共 50 条
  • [21] Observational constraints on the origin of the elements II. 3D non-LTE formation of BaII lines in the solar atmosphere
    Gallagher, A. J.
    Bergemann, M.
    Collet, R.
    Plez, B.
    Leenaarts, J.
    Carlsson, M.
    Yakovleva, S. A.
    Belyaev, A. K.
    ASTRONOMY & ASTROPHYSICS, 2020, 634 (634)
  • [22] 2D non-LTE radiative modelling of He I spectral lines formed in solar prominences
    Leger, L.
    Paletou, F.
    ASTRONOMY & ASTROPHYSICS, 2009, 498 (03): : 869 - 875
  • [23] 3D non-LTE modeling of the stellar center-to-limb variation for transmission spectroscopy studies
    Canocchi, G.
    Lind, K.
    Lagae, C.
    Pietrow, A. G. M.
    Amarsi, A. M.
    Kiselman, D.
    Andriienko, O.
    Hoeijmakers, H. J.
    ASTRONOMY & ASTROPHYSICS, 2024, 683
  • [24] Non-LTE line formation of Fe in late-type stars - I. Standard stars with 1D and ⟨3D⟩ model atmospheres
    Bergemann, Maria
    Lind, K.
    Collet, R.
    Magic, Z.
    Asplund, M.
    MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 2012, 427 (01) : 27 - 49
  • [25] Raising the observed metallicity floor with a 3D non-LTE analysis of SDSS J102915.14+172927.9☆
    Lagae, C.
    Amarsi, A. M.
    Diaz, L. F. Rodriguez
    Lind, K.
    Nordlander, T.
    Hansen, T. T.
    Heger, A.
    ASTRONOMY & ASTROPHYSICS, 2023, 672
  • [26] Three-dimensional non-LTE radiative transfer effects in Fe I lines II. Line formation in 3D radiation hydrodynamic simulations
    Holzreuter, R.
    Solanki, S. K.
    ASTRONOMY & ASTROPHYSICS, 2013, 558
  • [27] Reconstruction of a helical prominence in 3D from IRIS spectra and images
    Schmieder, B.
    Zapior, M.
    Ariste, A. Lopez
    Levens, P.
    Labrosse, N.
    Gravet, R.
    ASTRONOMY & ASTROPHYSICS, 2017, 606
  • [28] QUIESCENT PROMINENCES IN THE ERA OF ALMA: SIMULATED OBSERVATIONS USING THE 3D WHOLE-PROMINENCE FINE STRUCTURE MODEL
    Gunar, Stanislav
    Heinzel, Petr
    Mackay, Duncan H.
    Anzer, Ulrich
    ASTROPHYSICAL JOURNAL, 2016, 833 (02)
  • [29] Doppler effects on 3-D non-LTE radiation transport and emission spectra
    Hansen, S. B.
    Jones, B.
    Giuliani, J. L.
    Apruzese, J. P.
    Thornhill, J. W.
    Scott, H. A.
    Ampleford, D. J.
    Jennings, C. A.
    Coverdale, C. A.
    Cuneo, M. E.
    Rochau, G. A.
    Bailey, J. E.
    Dasgupta, A.
    Clark, R. W.
    Davis, J.
    HIGH ENERGY DENSITY PHYSICS, 2011, 7 (04) : 303 - 311
  • [30] Effective temperature determinations of late-type stars based on 3D non-LTE Balmer line formation
    Amarsi, A. M.
    Nordlander, T.
    Barklem, P. S.
    Asplund, M.
    Collet, R.
    Lind, K.
    ASTRONOMY & ASTROPHYSICS, 2018, 615