Design of a stabilized non-glycosylated Pfs48/45 antigen enables a potent malaria transmission-blocking nanoparticle vaccine

被引:13
作者
Dickey, Thayne H. H. [1 ]
Gupta, Richi [1 ]
McAleese, Holly [2 ]
Ouahes, Tarik [2 ]
Orr-Gonzalez, Sachy [2 ]
Ma, Rui [1 ]
Muratova, Olga [2 ]
Salinas, Nichole D. D. [1 ]
Hume, Jen C. C. [2 ]
Lambert, Lynn E. E. [2 ]
Duffy, Patrick E. E. [2 ,3 ]
Tolia, Niraj H. H. [1 ]
机构
[1] Natl Inst Allergy & Infect Dis, Host Pathogen Interact & Struct Vaccinol Sect, Lab Malaria Immunol & Vaccinol, Natl Inst Hlth NIH, Bethesda, MD 20892 USA
[2] Natl Inst Allergy & Infect Dis, Vaccine Dev Unit, Lab Malaria Immunol & Vaccinol, Natl Inst Hlth NIH, Bethesda, MD USA
[3] Natl Inst Allergy & Infect Dis, Pathogenesis & Immun Sect, Lab Malaria Immunol & Vaccinol, Natl Inst Hlth NIH, Bethesda, MD USA
基金
美国国家卫生研究院;
关键词
PLASMODIUM-FALCIPARUM; MONOCLONAL-ANTIBODIES; RECEPTOR-BINDING; GLYCAN SHIELD; PROTEIN; GLYCOSYLATION; EPITOPES; TARGET; OPTIMIZATION; PROTEOMICS;
D O I
10.1038/s41541-023-00619-9
中图分类号
R392 [医学免疫学]; Q939.91 [免疫学];
学科分类号
100102 ;
摘要
A malaria vaccine that blocks parasite transmission from human to mosquito would be a powerful method of disrupting the parasite lifecycle and reducing the incidence of disease in humans. Pfs48/45 is a promising antigen in development as a transmission blocking vaccine (TBV) against the deadliest malaria parasite Plasmodium falciparum. The third domain of Pfs48/45 (D3) is an established TBV candidate, but production challenges have hampered development. For example, to date, a non-native N-glycan is required to stabilize the domain when produced in eukaryotic systems. Here, we implement a SPEEDesign computational design and in vitro screening pipeline that retains the potent transmission blocking epitope in Pfs48/45 while creating a stabilized non-glycosylated Pfs48/45 D3 antigen with improved characteristics for vaccine manufacture. This antigen can be genetically fused to a self-assembling single-component nanoparticle, resulting in a vaccine that elicits potent transmission-reducing activity in rodents at low doses. The enhanced Pfs48/45 antigen enables many new and powerful approaches to TBV development, and this antigen design method can be broadly applied towards the design of other vaccine antigens and therapeutics without interfering glycans.
引用
收藏
页数:10
相关论文
共 24 条
  • [21] Improving the malaria transmission-blocking activity of a Plasmodium falciparum 48/45 based vaccine antigen by SpyTag/SpyCatcher mediated virus-like display
    Singh, Susheel K.
    Thrane, Susan
    Janitzek, Christoph M.
    Nielsen, Morten A.
    Theander, Thor G.
    Theisen, Michael
    Salanti, Ali
    Sander, Adam F.
    VACCINE, 2017, 35 (30) : 3726 - 3732
  • [22] Structural and immunogenicity analysis of reconstructed ancestral and consensus P48/45 for cross-species anti malaria transmission-blocking vaccine
    Ramanto, Kevin Nathanael
    Nurdiansyah, Rizky
    COMPUTATIONAL BIOLOGY AND CHEMISTRY, 2021, 92
  • [23] Comparison of Intranasal Outer Membrane Vesicles with Cholera Toxin and Injected MF59C.1 as Adjuvants for Malaria Transmission Blocking Antigens AnAPN1 and Pfs48/45
    Pritsch, Michael
    Ben-Khaled, Najib
    Chaloupka, Michael
    Kobold, Sebastian
    Berens-Riha, Nicole
    Peter, Annabell
    Liegl, Gabriele
    Schubert, Soeren
    Hoelscher, Michael
    Loescher, Thomas
    Wieser, Andreas
    JOURNAL OF IMMUNOLOGY RESEARCH, 2016, 2016
  • [24] Alga-Produced Malaria Transmission-Blocking Vaccine Candidate Pfs25 Formulated with a Human Use-Compatible Potent Adjuvant Induces High-Affinity Antibodies That Block Plasmodium falciparum Infection of Mosquitoes
    Patra, Kailash P.
    Li, Fengwu
    Carter, Darrick
    Gregory, James A.
    Baga, Sheyenne
    Reed, Steven G.
    Mayfield, Stephen P.
    Vinetz, Joseph M.
    INFECTION AND IMMUNITY, 2015, 83 (05) : 1799 - 1808