Stereo RGB and Deeper LIDAR-Based Network for 3D Object Detection in Autonomous Driving

被引:14
|
作者
He, Qingdong [1 ]
Wang, Zhengning [1 ]
Zeng, Hao [1 ]
Zeng, Yi [1 ]
Liu, Yijun [1 ]
Liu, Shuaicheng [1 ]
Zeng, Bing [1 ]
机构
[1] Univ Elect Sci & Technol China, Sch Informat & Commun Engn, Chengdu 611731, Peoples R China
关键词
3D object detection; stereo images; semantic information; spatial information; feature fusion; deeper LIDAR features;
D O I
10.1109/TITS.2022.3215766
中图分类号
TU [建筑科学];
学科分类号
0813 ;
摘要
3D object detection has become an emerging task in autonomous driving scenarios. Most of previous works process 3D point clouds using either projection-based or voxel-based models. However, both approaches contain some drawbacks. The voxel-based methods lack semantic information, while the projection-based methods suffer from numerous spatial information loss when projected to different views. In this paper, we propose the Stereo RGB and Deeper LIDAR (SRDL) framework which can utilize semantic and spatial information simultaneously such that the performance of network for 3D object detection can be improved naturally. Specifically, the network generates candidate boxes from stereo pairs and combines different region-wise features using a deep fusion scheme. The stereo strategy offers more information for prediction compared with prior works. Then, several local and global feature extractors are stacked in the segmentation module to capture richer deep semantic geometric features from point clouds. After aligning the interior points with fused features, the proposed network refines the prediction in a more accurate manner and encodes the whole box in a novel compact method. The decent experimental results on the challenging KITTI detection benchmark demonstrate the effectiveness of utilizing both stereo images and point clouds for 3D object detection.
引用
收藏
页码:152 / 162
页数:11
相关论文
共 50 条
  • [41] A LiDAR-Based Obstacle-Detection Framework for Autonomous Driving
    Wang, Lihao
    Zhao, Chengfeng
    Wang, Jun
    2020 EUROPEAN CONTROL CONFERENCE (ECC 2020), 2020, : 901 - 905
  • [42] DSC3D: Deformable Sampling Constraints in Stereo 3D Object Detection for Autonomous Driving
    Chen, Jiawei
    Song, Qi
    Guo, Wenzhong
    Huang, Rui
    IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, 2025, 35 (03) : 2794 - 2805
  • [43] SCDA-Net: Structure Completion and Density Awareness Network for LiDAR-Based 3D Object Detection
    Wu, Shuwen
    Yang, Jinfu
    Ma, Jiaqi
    Zhang, Shaochen
    Hao, Tianhao
    Li, Mingai
    IEEE ROBOTICS AND AUTOMATION LETTERS, 2025, 10 (05): : 4268 - 4275
  • [44] Monocular 3D Object Detection for Autonomous Driving
    Chen, Xiaozhi
    Kundu, Kaustav
    Zhang, Ziyu
    Ma, Huimin
    Fidler, Sanja
    Urtasun, Raquel
    2016 IEEE CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2016, : 2147 - 2156
  • [45] PLOT: a 3D point cloud object detection network for autonomous driving
    Zhang, Yihuan
    Wang, Liang
    Dai, Yifan
    ROBOTICA, 2023, 41 (05) : 1483 - 1499
  • [46] Multi-View 3D Object Detection Network for Autonomous Driving
    Chen, Xiaozhi
    Ma, Huimin
    Wan, Ji
    Li, Bo
    Xia, Tian
    30TH IEEE CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR 2017), 2017, : 6526 - 6534
  • [47] ProposalContrast: Unsupervised Pre-training for LiDAR-Based 3D Object Detection
    Yin, Junbo
    Zhou, Dingfu
    Zhang, Liangjun
    Fang, Jin
    Xu, Cheng-Zhong
    Shen, Jianbing
    Wang, Wenguan
    COMPUTER VISION, ECCV 2022, PT XXXIX, 2022, 13699 : 17 - 33
  • [48] 3D Object Detection for Autonomous Driving: A Survey
    Qian, Rui
    Lai, Xin
    Li, Xirong
    PATTERN RECOGNITION, 2022, 130
  • [49] UAV Position Estimation using a LiDAR-based 3D Object Detection Method
    Olawoye, Uthman
    Gross, Jason N.
    2023 IEEE/ION POSITION, LOCATION AND NAVIGATION SYMPOSIUM, PLANS, 2023, : 46 - 51
  • [50] 3DSG: A 3D LiDAR-Based Object Detection Method for Autonomous Mining Trucks Fusing Semantic and Geometric Features
    Li, Huazhi
    Wang, Zhangyu
    Yu, Guizhen
    Gong, Ziren
    Zhou, Bin
    Chen, Peng
    Zhao, Fei
    APPLIED SCIENCES-BASEL, 2022, 12 (23):