A Preserved Geometric Property Along the Second Ricci Flow on Noncompact Almost Hermitian Manifolds

被引:1
|
作者
Kawamura, Masaya [1 ]
机构
[1] Kagawa Coll, Natl Inst Technol, Dept Gen Educ, 355 Chokushi Cho, Takamatsu, Kagawa 7618058, Japan
关键词
Almost Hermitian structure; Second Ricci flow; Chern connection; METRICS;
D O I
10.1007/s41980-023-00749-9
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We show the short-time existence of the second Ricci flow on a complete noncompact almost Hermitian manifold, and prove that along the second Ricci flow, the non-positivity of the first Chern-Ricci curvature can be preserved if the initial almost Hermitian metric has non-positive bisectional curvature. If additionally the first Chern-Ricci curvature of the initial metric is negative at least at one point, then we show that the almost complex structure of a complete noncompact non-quasi-Kahler almost Hermitian manifold equipped with such a metric cannot be integrable.
引用
收藏
页数:62
相关论文
共 50 条
  • [31] Geometric realizability of covariant derivative Kähler tensors for almost pseudo-Hermitian and almost para-Hermitian manifolds
    M. Brozos-Vázquez
    E. García-Río
    P. Gilkey
    L. Hervella
    Annali di Matematica Pura ed Applicata, 2012, 191 : 487 - 502
  • [32] The behavior of the second Ricci flow on complex parallelizable manifolds
    Bedulli, Lucio
    Vezzoni, Luigi
    COMMUNICATIONS IN CONTEMPORARY MATHEMATICS, 2025,
  • [33] Non-singular Solutions of Normalized Ricci Flow on Noncompact Manifolds of Finite Volume
    Fuquan Fang
    Zhenlei Zhang
    Yuguang Zhang
    Journal of Geometric Analysis, 2010, 20 : 592 - 608
  • [34] Non-singular Solutions of Normalized Ricci Flow on Noncompact Manifolds of Finite Volume
    Fang, Fuquan
    Zhang, Zhenlei
    Zhang, Yuguang
    JOURNAL OF GEOMETRIC ANALYSIS, 2010, 20 (03) : 592 - 608
  • [35] Ricci flow of almost non-negatively curved three manifolds
    Simon, Miles
    JOURNAL FUR DIE REINE UND ANGEWANDTE MATHEMATIK, 2009, 630 : 177 - 217
  • [36] The second Sobolev best constant along the Ricci flow
    Ezequiel R. Barbosa
    Marcos Montenegro
    Bulletin of the Brazilian Mathematical Society, New Series, 2008, 39 : 427 - 445
  • [37] A third order dispersive flow for closed curves into almost Hermitian manifolds
    Chihara, Hiroyuki
    Onodera, Eiji
    JOURNAL OF FUNCTIONAL ANALYSIS, 2009, 257 (02) : 388 - 404
  • [38] The second Sobolev best constant along the Ricci flow
    Barbosa, Ezequiel R.
    Montenegro, Marcos
    BULLETIN OF THE BRAZILIAN MATHEMATICAL SOCIETY, 2008, 39 (03): : 427 - 445
  • [39] Evolution and Monotonicity of Geometric Constants Along the Extended Ricci Flow
    Saha, Apurba
    Azami, Shahroud
    Hui, Shyamal Kumar
    MEDITERRANEAN JOURNAL OF MATHEMATICS, 2021, 18 (05)
  • [40] Evolution and Monotonicity of Geometric Constants Along the Extended Ricci Flow
    Apurba Saha
    Shahroud Azami
    Shyamal Kumar Hui
    Mediterranean Journal of Mathematics, 2021, 18