Riemann problems for generalized gas dynamics

被引:1
作者
Kumar, Akshay [1 ,2 ]
Radha, R. [1 ]
机构
[1] Univ Hyderabad, Sch Math & Stat, Hyderabad, India
[2] Univ Hyderabad, Sch Math & Stat, Hyderabad 500046, India
关键词
differential constraints method; generalized Riemann problem; quasilinear hyperbolic systems; rarefaction waves; shock waves; ASYMPTOTIC-EXPANSION; HYPERBOLIC SYSTEMS; EQUATIONS;
D O I
10.1111/sapm.12565
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, a few classes of exact solutions are obtained using the differential constraints method for generalized gas dynamics equations. The solutions to Riemann problems for two different kinds of initial data are determined with a complete characterization of the solutions through shock waves and/or rarefaction waves.
引用
收藏
页码:1154 / 1181
页数:28
相关论文
共 29 条
  • [21] Raspopov V.E., 1974, IZV VYSSHIKH UCHEBNY, V11, P69
  • [22] Rozhdestvenski BL., 1983, SYSTEMS QUASILINEAR, V55
  • [23] EXACT SOLUTIONS OF GENERALIZED RIEMANN PROBLEM FOR NONHOMOGENEOUS SHALLOW WATER EQUATIONS
    Sahoo, Sueet Millon
    Sekhar, T. Raja
    Sekhar, G. P. Raja
    [J]. INDIAN JOURNAL OF PURE & APPLIED MATHEMATICS, 2020, 51 (03) : 1225 - 1237
  • [24] SHARMA VD, 2010, CH CRC MONOGR SURV P, V142, P1
  • [25] Sidorov A., 1984, Method of Differential Constraints and its Applications in Gas Dynamics
  • [26] Smoller J., 1994, SHOCK WAVES REACTION, V2, DOI DOI 10.1007/978-1-4612-0873-0
  • [27] The exact Riemann solutions to the generalized Chaplygin gas equations with friction
    Sun, Meina
    [J]. COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2016, 36 : 342 - 353
  • [28] The Riemann problem for one dimensional generalized Chaplygin gas dynamics
    Wang, Guodong
    [J]. JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2013, 403 (02) : 434 - 450
  • [29] Whitham G.B., 1974, Linear and nonlinear waves