xcore: an R package for inference of gene expression regulators

被引:0
作者
Migdal, Maciej [1 ]
Arakawa, Takahiro [2 ]
Takizawa, Satoshi [2 ]
Furuno, Masaaki [2 ]
Suzuki, Harukazu [2 ]
Arner, Erik [2 ,3 ]
Winata, Cecilia Lanny [1 ]
Kaczkowski, Bogumil [2 ,4 ]
机构
[1] Int Inst Mol & Cell Biol Warsaw, Lab Zebrafish Dev Genom, Warsaw, Poland
[2] RIKEN Ctr Integrat Med Sci, Yokohama 2300045, Japan
[3] GSK, Gunnels Wood Rd, Stevenage SG1 2NY, England
[4] AstraZeneca R&D, Data Sci & Quantitat Biol, Discovery Sci, Cambridge, England
关键词
Gene expression; Gene regulation; Regression; Transcription factors; ChIP-seq; TRANSCRIPTION FACTOR-BINDING; REGIONS;
D O I
10.1186/s12859-022-05084-0
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
Background: Elucidating the Transcription Factors (TFs) that drive the gene expression changes in a given experiment is a common question asked by researchers. The existing methods rely on the predicted Transcription Factor Binding Site (TFBS) to model the changes in the motif activity. Such methods only work for TFs that have a motif and assume the TF binding profile is the same in all cell types. Results: Given the wealth of the ChIP-seq data available for a wide range of the TFs in various cell types, we propose that gene expression modeling can be done using ChIP-seq "signatures " directly, effectively skipping the motif finding and TFBS prediction steps. We present xcore, an R package that allows TF activity modeling based on ChIP-seq signatures and the user's gene expression data. We also provide xcoredata a companion data package that provides a collection of preprocessed ChIP-seq signatures. We demonstrate that xcore leads to biologically relevant predictions using transforming growth factor beta induced epithelial-mesenchymal transition time-courses, rinderpest infection time-courses, and embryonic stem cells differentiated to cardiomyocytes time-course profiled with Cap Analysis Gene Expression. Conclusions: xcore provides a simple analytical framework for gene expression modeling using linear models that can be easily incorporated into differential expression analysis pipelines. Taking advantage of public ChIP-seq databases, xcore can identify meaningful molecular signatures and relevant ChIP-seq experiments.
引用
收藏
页数:12
相关论文
共 27 条
  • [1] Adipose Tissue MicroRNAs as Regulators of CCL2 Production in Human Obesity
    Arner, Erik
    Mejhert, Niklas
    Kulyte, Agne
    Balwierz, Piotr J.
    Pachkov, Mikhail
    Cormont, Mireille
    Lorente-Cebrian, Silvia
    Ehrlund, Anna
    Laurencikiene, Jurga
    Heden, Per
    Dahlman-Wright, Karin
    Tanti, Jean-Francois
    Hayashizaki, Yoshihide
    Ryden, Mikael
    Dahlman, Ingrid
    van Nimwegen, Erik
    Daub, Carsten O.
    Arner, Peter
    [J]. DIABETES, 2012, 61 (08) : 1986 - 1993
  • [2] ISMARA: automated modeling of genomic signals as a democracy of regulatory motifs
    Balwierz, Piotr J.
    Pachkov, Mikhail
    Arnold, Phil
    Gruber, Andreas J.
    Zavolan, Mihaela
    van Nimwegen, Erik
    [J]. GENOME RESEARCH, 2014, 24 (05) : 869 - 884
  • [3] AmiGO: online access to ontology and annotation data
    Carbon, Seth
    Ireland, Amelia
    Mungall, Christopher J.
    Shu, ShengQiang
    Marshall, Brad
    Lewis, Suzanna
    [J]. BIOINFORMATICS, 2009, 25 (02) : 288 - 289
  • [4] ReMap 2020: a database of regulatory regions from an integrative analysis of Human and Arabidopsis DNA-binding sequencing experiments
    Cheneby, Jeanne
    Menetrier, Zacharie
    Mestdagh, Martin
    Rosnet, Thomas
    Douida, Allyssa
    Rhalloussi, Wassim
    Bergon, Aurelie
    Lopez, Fabrice
    Ballester, Benoit
    [J]. NUCLEIC ACIDS RESEARCH, 2020, 48 (D1) : D180 - D188
  • [5] Significance testing in ridge regression for genetic data
    Cule, Erika
    Vineis, Paolo
    De Iorio, Maria
    [J]. BMC BIOINFORMATICS, 2011, 12
  • [6] RNA Helicases DDX5 and DDX17 Dynamically Orchestrate Transcription, miRNA, and Splicing Programs in Cell Differentiation
    Dardenne, Etienne
    Espinoza, Micaela Polay
    Fattet, Laurent
    Germann, Sophie
    Lambert, Marie-Pierre
    Neil, Helen
    Zonta, Eleonora
    Mortada, Hussein
    Gratadou, Lise
    Deygas, Mathieu
    Chakrama, Fatima Zahra
    Samaan, Samaan
    Desment, Francois-Olivier
    Tranchevent, Leon-Charles
    Dutertre, Martin
    Rimokh, Ruth
    Bourgeois, Cyril F.
    Auboeuf, Didier
    [J]. CELL REPORTS, 2014, 7 (06): : 1900 - 1913
  • [7] Ki26894, a novel transforming growth factor-β type I receptor kinase inhibitor, inhibits in vitro invasion and in vivo bone metastasis of a human breast cancer cell line
    Ehata, Shogo
    Hanyu, Aki
    Fujime, Makoto
    Katsuno, Yoko
    Fukunaga, Erina
    Goto, Kouichiro
    Ishikawa, Yuichi
    Nomura, Kimie
    Yokoo, Hiroshi
    Shimizu, Toshiyuki
    Ogata, Etsuro
    Miyazono, Kohei
    Shimizu, Kiyoshi
    Imamura, Takeshi
    [J]. CANCER SCIENCE, 2007, 98 (01) : 127 - 133
  • [8] Regularization Paths for Generalized Linear Models via Coordinate Descent
    Friedman, Jerome
    Hastie, Trevor
    Tibshirani, Rob
    [J]. JOURNAL OF STATISTICAL SOFTWARE, 2010, 33 (01): : 1 - 22
  • [9] RIDGE REGRESSION - BIASED ESTIMATION FOR NONORTHOGONAL PROBLEMS
    HOERL, AE
    KENNARD, RW
    [J]. TECHNOMETRICS, 1970, 12 (01) : 55 - &
  • [10] KEGG for representation and analysis of molecular networks involving diseases and drugs
    Kanehisa, Minoru
    Goto, Susumu
    Furumichi, Miho
    Tanabe, Mao
    Hirakawa, Mika
    [J]. NUCLEIC ACIDS RESEARCH, 2010, 38 : D355 - D360