NONLINEAR FRACTIONAL SCHRO spacing diaeresis DINGER EQUATIONS COUPLED BY POWER-TYPE NONLINEARITIES

被引:1
作者
Colorado, Eduardo [1 ]
Ortega, Alejandro [1 ]
机构
[1] Univ Carlos III Madrid, Dept Matemat, Av Univ 30, Leganes 28911, Madrid, Spain
关键词
GROUND-STATES; SCHRODINGER-EQUATIONS; POSITIVE SOLUTIONS; STANDING WAVES; SOLITARY WAVES; BOUND-STATES; SYSTEMS; REGULARITY; UNIQUENESS; EXISTENCE;
D O I
10.57262/ade028-0102-113
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this work, we study the following class of systems of coupled nonlinear fractional Schrodinger equations, {(-delta)(s)u(1 )+lambda(1)u(1) = mu(1)|u(1)|(2p-2)u(1) + beta|u(2)|(p)|u(1)|(p-2)u(1) in R-N, (-delta)(s)u(2 )+lambda(2)u(2) = mu(2)|u(2)|(2p-2)u(2) + beta|u(1)|(p)|u(2)|(p-2)u(2) in R-N, where u(1), u(2) is an element of W-s,W-2(R-N), with N = 1, 2, 3; lambda(j), mu(j) > 0, j = 1, 2, beta is an element of R, p >= 2 and p - 1/2p N < s < 1. Precisely, we prove the existence of positive radial bound and ground state solutions provided the parameters p, beta, lambda(j), mu(j), (j = 1, 2) satisfy appropriate conditions. We also study the previous system with m equations, (-delta)(s)u(j) + lambda(j)u(j) = mu(j)|u(j)|(2p-2)u(j) + sigma(m)(k=1k&NOTEQUexpressionL;j) beta(jk)|u(k)|(p)|u(j)|(p-2)u(j), uj is an element of W-s,W-2(R-N) where j = 1, ... , m >= 3, lambda(j), mu(j )> 0, the coupling parameters beta(jk) = beta(kj )is an element of R for j, k = 1, ... , m, j &NOTEQUexpressionL; k. For this system, we prove sim-ilar results as for m = 2, depending on the values of the parameters p, beta(jk), lambda(j), mu(j), (for j, k = 1,.. ., m, j &NOTEQUexpressionL; k).
引用
收藏
页码:113 / 142
页数:30
相关论文
共 51 条
  • [1] Akhmediev N. N., 1997, Solitons: Nonlinear Pulses and Beams
  • [2] Bound and ground states of coupled nonlinear Schrodinger equations
    Ambrosetti, A
    Colorado, E
    [J]. COMPTES RENDUS MATHEMATIQUE, 2006, 342 (07) : 453 - 458
  • [3] Ambrosetti A., 1973, Journal of Functional Analysis, V14, P349, DOI 10.1016/0022-1236(73)90051-7
  • [4] Standing waves of some coupled nonlinear Schrodinger equations
    Ambrosetti, Antonio
    Colorado, Eduardo
    [J]. JOURNAL OF THE LONDON MATHEMATICAL SOCIETY-SECOND SERIES, 2007, 75 : 67 - 82
  • [5] Applebaum D., 2009, Cambridge studies in advanced mathematics, V116
  • [6] Bound states for a coupled Schrodinger system
    Bartsch, Thomas
    Wang, Zhi-Qiang
    Wei, Juncheng
    [J]. JOURNAL OF FIXED POINT THEORY AND APPLICATIONS, 2007, 2 (02) : 353 - 367
  • [7] Bartsch T, 2006, J PARTIAL DIFFER EQ, V19, P200
  • [8] Bertoin J., 1996, CAMBRIDGE TRACTS MAT, V121
  • [9] A concave-convex elliptic problem involving the fractional Laplacian
    Braendle, C.
    Colorado, E.
    de Pablo, A.
    Sanchez, U.
    [J]. PROCEEDINGS OF THE ROYAL SOCIETY OF EDINBURGH SECTION A-MATHEMATICS, 2013, 143 (01) : 39 - 71
  • [10] Nonlinear equations for fractional Laplacians, I: Regularity, maximum principles, and Hamiltonian estimates
    Cabre, Xavier
    Sire, Yannick
    [J]. ANNALES DE L INSTITUT HENRI POINCARE-ANALYSE NON LINEAIRE, 2014, 31 (01): : 23 - 53