Harmonic unit normal sections of Grassmannians associated with cross products

被引:0
作者
Ferraris, Francisco [1 ,2 ]
Moas, Ruth Paola [1 ,2 ]
Salvai, Marcos [1 ,2 ]
机构
[1] Univ Nacl Cordoba, FAMAF, Av Medina Allende S-N,Ciudad Univ,X5000HUA, Cordoba, Argentina
[2] Consejo Nacl Invest Cient & Tecn, CIEM, Av Medina Allende S-N,Ciudad Univ,X5000HUA, Cordoba, Argentina
来源
REVISTA MATEMATICA COMPLUTENSE | 2023年 / 36卷 / 02期
关键词
Harmonic map; Grassmannian; Cross product; Octonions; Rough Laplacian; Almost complex structure; VECTOR-FIELDS; ENERGY; VOLUME; MINIMALITY;
D O I
10.1007/s13163-022-00428-z
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let G (k, n) be the Grassmannian of oriented subspaces of dimension k of R-n with its canonical Riemannian metric. We study the energy of maps assigning to each P is an element of G (k, n) a unit vector normal to P. They are sections of a sphere bundle E-k,n(1) over G (k, n). The octonionic double and triple cross products induce in a natural way such sections for k = 2, n = 7 and k = 3, n = 8, respectively. We prove that they are harmonicmaps into E-k,n(1) endowedwith the Sasaki metric. This, together with thewellknown result that Hopf vector fields on odd dimensional spheres are harmonic maps into their unit tangent bundles, allows us to conclude that all unit normal sections of the Grassmannians associated with cross products are harmonic. In a second instance we analyze the energy of maps assigning an orthogonal complex structure J (P) on P-perpendicular to to each P is an element of G (2, 8). We prove that the one induced by the octonionic triple product is a harmonic map into a suitable sphere bundle over G (2, 8). This generalizes the harmonicity of the canonical almost complex structure of S-6.
引用
收藏
页码:443 / 468
页数:26
相关论文
共 27 条
[1]   HARMONIC SECTIONS OF TANGENT BUNDLES EQUIPPED WITH RIEMANNIAN g-NATURAL METRICS [J].
Abbassi, M. T. K. ;
Calvaruso, G. ;
Perrone, D. .
QUARTERLY JOURNAL OF MATHEMATICS, 2011, 62 (02) :259-288
[2]   Orthogonal almost-complex structures of minimal energy [J].
Bor, Gil ;
Hernandez-Lamoneda, Luis ;
Salvai, Marcos .
GEOMETRIAE DEDICATA, 2007, 127 (01) :75-85
[3]   *GROUPES DE LIE ET PUISSANCES REDUITES DE STEENROD [J].
BOREL, A ;
SERRE, JP .
AMERICAN JOURNAL OF MATHEMATICS, 1953, 75 (03) :409-448
[4]   A topological lower bound for the energy of a unit vector field on a closed Euclidean hypersurface [J].
Brito, Fabiano G. B. ;
Goncalves, Icaro ;
Nicoli, Adriana, V .
ANNALES POLONICI MATHEMATICI, 2020, 125 (03) :203-213
[5]   VECTOR CROSS PRODUCTS [J].
BROWN, RB ;
GRAY, A .
COMMENTARII MATHEMATICI HELVETICI, 1967, 42 (03) :222-&
[6]  
Calabi E., 1993, P S PURE MATH, V54, P99
[7]   Harmonicity and minimality of complex and quaternionic radial foliations [J].
Carmelo Gonzalez-Davila, Jose .
FORUM MATHEMATICUM, 2018, 30 (03) :785-798
[8]  
Dragomir S, 2012, HARMONIC VECTOR FIELDS: VARIATIONAL PRINCIPLES AND DIFFERENTIAL GEOMETRY, P1
[9]  
Fei T., ARXIV150402807V2MATH
[10]   Harmonicity and minimality of oriented distributions [J].
Gil-Medrano, O ;
González-Dávila, JC ;
Vanhecke, L .
ISRAEL JOURNAL OF MATHEMATICS, 2004, 143 (1) :253-279