MULTISPECTRAL UAV DATA ENHANCING THE KNOWLEDGE OF LANDSCAPE HERITAGE

被引:2
|
作者
Santoro, V. [1 ]
Patrucco, G. [1 ]
Lingua, A. [2 ]
Spano, A. [1 ,3 ]
机构
[1] Politecn Torino, Dept Architecture & Design DAD, LabG4CH Lab Geomat Cultural Heritage, Viale Mattioli 39, I-10125 Turin, Italy
[2] Politecn Torino, Dept Environm Land & Infrastruct Engn DIATI, Photogrammetry & GIS Lab, Corso Duca Abruzzi 24, I-10129 Turin, Italy
[3] OGR Tech, Polito FULL Future Urban Legacy Lab, Corso Castelfidardo 22, I-10128 Turin, Italy
关键词
UAV photogrammetry; multispectral imagery; landscape heritage; SLAM-based MMS; spectral indices; IMAGES; SENTINEL-2;
D O I
10.5194/isprs-archives-XLVIII-M-2-2023-1419-2023
中图分类号
K85 [文物考古];
学科分类号
0601 ;
摘要
Landscape heritage, especially if it does not arouse great public echoes, needs great attention, starting from knowledge and metric documentation processes to which reality- based sensing techniques often contribute significantly. The primary purpose of this work is to reflect on the possibility of identifying submerged built heritages, which are sometimes characterised by precarious safety conditions due to abandonment, through multispectral photogrammetric technologies with primary data acquired by UAVs. The experience carried out in an impervious alpine territory foresees the close relationship of integration of photogrammetric techniques in the visible and the multispectral ranges, with the integration of terrestrial scanning solutions from slam-based mobile systems, to validate the results provided by the analysis of the spectral signatures of different kind of soils.
引用
收藏
页码:1419 / 1426
页数:8
相关论文
共 50 条
  • [1] Small Multispectral UAV Sensor and Its Image Fusion Capability in Cultural Heritage Applications
    Kaimaris, Dimitris
    Kandylas, Aristoteles
    HERITAGE, 2020, 3 (04): : 1046 - 1062
  • [2] GIS-based detection of terraced landscape heritage: comparative tests using regional DEMs and UAV data
    Spano, Antonia
    Sammartano, Giulia
    Tunin, Francesca Calcagno
    Cerise, Sylvie
    Possi, Giulia
    APPLIED GEOMATICS, 2018, 10 (02) : 77 - 97
  • [3] Fusion of Multispectral Imagery and Spectrometer Data in UAV Remote Sensing
    Zeng, Chuiqing
    King, Douglas J.
    Richardson, Murray
    Shan, Bo
    REMOTE SENSING, 2017, 9 (07):
  • [4] Automated Counting of Tobacco Plants Using Multispectral UAV Data
    Lin, Hong
    Chen, Zhuqun
    Qiang, Zhenping
    Tang, Su-Kit
    Liu, Lin
    Pau, Giovanni
    AGRONOMY-BASEL, 2023, 13 (12):
  • [5] Perennial ryegrass biomass retrieval through multispectral UAV data
    Alckmin, Gustavo Togeirode
    Lucieer, Arko
    Rawnsley, Richard
    Kooistra, Lammert
    COMPUTERS AND ELECTRONICS IN AGRICULTURE, 2022, 193
  • [6] THE ENHANCING OF THE ENVIRONMENTAL LANDSCAPE AND THE CULTURAL HERITAGE BY A PROJECT OF AGRICULTURAL PARK
    Sturiale, Luisa
    Trovato, Maria Rosa
    SOCIETY, INTEGRATION, EDUCATION: UTOPIAS AND DYSTOPIAS IN LANDSCAPE AND CULTURAL MOSAIC - VISIONS VALUES VULNERABILITY, 2013, VOL III, 2013, : 201 - 212
  • [7] From Heritage as Landscape to Landscape as Heritage
    Gomez-Mendoza, Josefina
    DOCUMENTS D ANALISI GEOGRAFICA, 2013, 59 (01): : 5 - 20
  • [8] Detection of buried archaeological remains with the combined use of satellite multispectral data and UAV data
    Calleja, Javier F.
    Requejo Pages, Otilia
    Diaz-Alvarez, Nelson
    Peon, Juanjo
    Gutierrez, Natalia
    Martin-Hernandez, Esperanza
    Cebada Relea, Alejandro
    Rubio Melendi, David
    Fernandez Alvarez, Paulino
    INTERNATIONAL JOURNAL OF APPLIED EARTH OBSERVATION AND GEOINFORMATION, 2018, 73 : 555 - 573
  • [9] Defoliation Categorization in Soybean with Machine Learning Algorithms and UAV Multispectral Data
    Ferraz, Marcelo Araujo Junqueira
    Santiago, Afranio Gabriel da Silva Godinho
    Bruzi, Adriano Teodoro
    Vilela, Nelson Junior Dias
    Ferraz, Gabriel Araujo e Silva
    AGRICULTURE-BASEL, 2024, 14 (11):
  • [10] Comparing multispectral and hyperspectral UAV data for detecting peatland vegetation patterns
    Pang, Yuwen
    Rasanen, Aleksi
    Wolff, Franziska
    Tahvanainen, Teemu
    Mannikko, Milja
    Aurela, Mika
    Korpelainen, Pasi
    Kumpula, Timo
    Virtanen, Tarmo
    INTERNATIONAL JOURNAL OF APPLIED EARTH OBSERVATION AND GEOINFORMATION, 2024, 132