YOLOv7oSAR: A Lightweight High-Precision Ship Detection Model for SAR Images Based on the YOLOv7 Algorithm

被引:13
作者
Liu, Yilin [1 ,2 ]
Ma, Yong [1 ]
Chen, Fu [1 ]
Shang, Erping [1 ]
Yao, Wutao [1 ]
Zhang, Shuyan [1 ]
Yang, Jin [1 ]
机构
[1] Chinese Acad Sci, Aerosp Informat Res Inst, Beijing 100094, Peoples R China
[2] Univ Chinese Acad Sci, Coll Resources & Environm, Beijing 100049, Peoples R China
基金
中国国家自然科学基金;
关键词
YOLO algorithm; ship detection; oriented bounding box; Synthetic aperture radar (SAR) images; DATASET; NETWORK;
D O I
10.3390/rs16050913
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Researchers have explored various methods to fully exploit the all-weather characteristics of Synthetic aperture radar (SAR) images to achieve high-precision, real-time, computationally efficient, and easily deployable ship target detection models. These methods include Constant False Alarm Rate (CFAR) algorithms and deep learning approaches such as RCNN, YOLO, and SSD, among others. While these methods outperform traditional algorithms in SAR ship detection, challenges still exist in handling the arbitrary ship distributions and small target features in SAR remote sensing images. Existing models are complex, with a large number of parameters, hindering effective deployment. This paper introduces a YOLOv7 oriented bounding box SAR ship detection model (YOLOv7oSAR). The model employs a rotation box detection mechanism, uses the KLD loss function to enhance accuracy, and introduces a Bi-former attention mechanism to improve small target detection. By redesigning the network's width and depth and incorporating a lightweight P-ELAN structure, the model effectively reduces its size and computational requirements. The proposed model achieves high-precision detection results on the public RSDD dataset (94.8% offshore, 66.6% nearshore), and its generalization ability is validated on a custom dataset (94.2% overall detection accuracy).
引用
收藏
页数:25
相关论文
共 51 条
[1]  
Bochkovskiy A, 2020, Arxiv, DOI [arXiv:2004.10934, 10.48550/arXiv.2004.10934, DOI 10.48550/ARXIV.2004.10934]
[2]   End-to-End Object Detection with Transformers [J].
Carion, Nicolas ;
Massa, Francisco ;
Synnaeve, Gabriel ;
Usunier, Nicolas ;
Kirillov, Alexander ;
Zagoruyko, Sergey .
COMPUTER VISION - ECCV 2020, PT I, 2020, 12346 :213-229
[3]   Ship Detection Based on YOLOv2 for SAR Imagery [J].
Chang, Yang-Lang ;
Anagaw, Amare ;
Chang, Lena ;
Wang, Yi Chun ;
Hsiao, Chih-Yu ;
Lee, Wei-Hong .
REMOTE SENSING, 2019, 11 (07)
[4]   Run, Don't Walk: Chasing Higher FLOPS for Faster Neural Networks [J].
Chen, Jierun ;
Kao, Shiu-Hong ;
He, Hao ;
Zhuo, Weipeng ;
Wen, Song ;
Lee, Chul-Ho ;
Chan, S. -H. Gary .
2023 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2023, :12021-12031
[5]   Multi-Scale Ship Detection Algorithm Based on YOLOv7 for Complex Scene SAR Images [J].
Chen, Zhuo ;
Liu, Chang ;
Filaretov, V. F. ;
Yukhimets, D. A. .
REMOTE SENSING, 2023, 15 (08)
[6]   Revisiting RCNN: On Awakening the Classification Power of Faster RCNN [J].
Cheng, Bowen ;
Wei, Yunchao ;
Shi, Honghui ;
Feris, Rogerio ;
Xiong, Jinjun ;
Huang, Thomas .
COMPUTER VISION - ECCV 2018, PT 15, 2018, 11219 :473-490
[7]   Learning RoI Transformer for Oriented Object Detection in Aerial Images [J].
Ding, Jian ;
Xue, Nan ;
Long, Yang ;
Xia, Gui-Song ;
Lu, Qikai .
2019 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR 2019), 2019, :2844-2853
[8]   Statistical Modeling of SAR Images: A Survey [J].
Gao, Gui .
SENSORS, 2010, 10 (01) :775-795
[9]   Azimuth-Sensitive Object Detection of High-Resolution SAR Images in Complex Scenes by Using a Spatial Orientation Attention Enhancement Network [J].
Ge, Ji ;
Wang, Chao ;
Zhang, Bo ;
Xu, Changgui ;
Wen, Xiaoyang .
REMOTE SENSING, 2022, 14 (09)
[10]  
Ge Z, 2021, Arxiv, DOI arXiv:2107.08430