Nodal-line transition induced Landau gap in strained lattices

被引:4
作者
Cai, Han [1 ,2 ,3 ]
Ma, Shaojie [4 ]
Wang, Da-Wei [2 ,3 ,5 ,6 ]
机构
[1] Zhejiang Univ, Coll Opt Sci & Engn, Hangzhou 310027, Peoples R China
[2] Zhejiang Univ, Sch Phys, Interdisciplinary Ctr Quantum Informat, State Key Lab Extreme Photon & Instrumentat, Hangzhou 310027, Peoples R China
[3] Zhejiang Univ, Sch Phys, Zhejiang Prov Key Lab Quantum Technol & Device, Hangzhou 310027, Peoples R China
[4] Fudan Univ, Dept Opt Sci & Engn, Shanghai 200433, Peoples R China
[5] Hefei Natl Lab, Hefei 230088, Peoples R China
[6] Univ Chinese Acad Sci, CAS Ctr Excellence Topol Quantum Computat, Beijing 100190, Peoples R China
基金
中国国家自然科学基金;
关键词
ELECTRONIC-PROPERTIES; DIRAC FERMIONS; GRAPHENE; DISCOVERY; SEMIMETAL; FIELD;
D O I
10.1103/PhysRevB.108.085113
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
In topological semimetals, the bands can cross at points or lines with different dimensionality and connectivity in momentum space. For graphene and other systems hosting zero-dimensional band touching points, inhomogeneous strain is used to shift the nodal points to mimic gauge fields, whereas the one-dimensional nodal lines can transit between topologically distinct structures in strain fields. Such a nodal-line transition can provide a powerful way to engineer the electronic properties. Here we study the strain-induced Landau quantization for diamond lattices, where nodal chains split into separate lines. The nodal-line transition opens a finite Landau gap for the critical chain point with a vanishing Fermi velocity, which is impossible to be opened in the scenario of magnetic fields or nodal-point systems. Besides the unconventional energy quantization near the chain point, the strained diamond lattices exhibit perfect flat bands in three dimensions with a root n-scaling (n is an integer). We also investigate the associated edge states and the line-dependent Hall response. Our work provides an avenue towards understanding the profound roles of nodal-line transition in topological matter and paves the way to study the interplay between strain and higher-dimensional nodal manifolds in arbitrary dimensions.
引用
收藏
页数:9
相关论文
共 113 条
[1]   Topological Properties of Linear Circuit Lattices [J].
Albert, Victor V. ;
Glazman, Leonid I. ;
Jiang, Liang .
PHYSICAL REVIEW LETTERS, 2015, 114 (17)
[2]  
aps, About us, DOI [10.1103/PhysRevB.108.085113, DOI 10.1103/PHYSREVB.108.085113]
[3]   Topoelectrical circuit octupole insulator with topologically protected corner states [J].
Bao, Jiacheng ;
Zou, Deyuan ;
Zhang, Weixuan ;
He, Wenjing ;
Sun, Houjun ;
Zhang, Xiangdong .
PHYSICAL REVIEW B, 2019, 100 (20)
[4]   Complex Landau levels and related transport properties in the strained zigzag graphene nanoribbons [J].
Bao, Zhi-Qiang ;
Ding, Ju-Wen ;
Qi, Junjie .
PHYSICAL REVIEW B, 2023, 107 (12)
[5]   Observation of supersymmetric pseudo-Landau levels in strained microwave graphene [J].
Bellec, Matthieu ;
Poli, Charles ;
Kuhl, Ulrich ;
Mortessagne, Fabrice ;
Schomerus, Henning .
LIGHT-SCIENCE & APPLICATIONS, 2020, 9 (01)
[6]   Nodal-knot semimetals [J].
Bi, Ren ;
Yan, Zhongbo ;
Lu, Ling ;
Wang, Zhong .
PHYSICAL REVIEW B, 2017, 96 (20)
[7]   Beyond Dirac and Weyl fermions: Unconventional quasiparticles in conventional crystals [J].
Bradlyn, Barry ;
Cano, Jennifer ;
Wang, Zhijun ;
Vergniory, M. G. ;
Felser, C. ;
Cava, R. J. ;
Bernevig, B. Andrei .
SCIENCE, 2016, 353 (6299)
[8]   Topological nodal semimetals [J].
Burkov, A. A. ;
Hook, M. D. ;
Balents, Leon .
PHYSICAL REVIEW B, 2011, 84 (23)
[9]   Weyl Semimetal in a Topological Insulator Multilayer [J].
Burkov, A. A. ;
Balents, Leon .
PHYSICAL REVIEW LETTERS, 2011, 107 (12)
[10]   Nodal-chain metals [J].
Bzdusek, Tomas ;
Wu, QuanSheng ;
Ruegg, Andreas ;
Sigrist, Manfred ;
Soluyanov, Alexey A. .
NATURE, 2016, 538 (7623) :75-78