The Relation Between the Harmonic Index and Some Coloring Parameters

被引:2
作者
Lin, Dazhi [1 ]
机构
[1] Henan Univ Anim Husb & Econ, Zhengzhou 450044, Peoples R China
关键词
Harmonic index; DP-chromatic number; DP-paint number; Coloring number; NUMBER; TREES;
D O I
10.1007/s40840-024-01662-y
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let H(G) be the harmonic index of a graph G, which is defined as: H(G)= n-ary sumation uv is an element of E(G)2dG(u)+dG(v).\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\begin{aligned} H(G) = \sum _{uv \in E(G)}\frac{2}{d_{G}(u) + d_{G}(v)}. \end{aligned}$$\end{document}In this note, we define a new graph parameter xi(G)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\xi (G)$$\end{document} satisfying some properties and prove that xi(G)<= 2H(G)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\xi (G) \le 2H(G)$$\end{document}, with equality if and only if G is a non-trivial complete graph, possibly plus some additional isolated vertices. In particular, xi(G)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\xi (G)$$\end{document} can be the chromatic number chi(G)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\chi (G)$$\end{document}, the choice number chi l(G)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\chi _{\ell }(G)$$\end{document}, the DP-chromatic number chi DP(G)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\chi _{\text {DP}}(G)$$\end{document}, the DP-paint number chi DPP(G)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\chi _{\text {DPP}}(G)$$\end{document}, the weak coloring number wcol(G)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\text {wcol}(G)$$\end{document}, the coloring number col(G)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\text {col}(G)$$\end{document}. Our result generalizes some corresponding known results.
引用
收藏
页数:7
相关论文
共 19 条
[1]   The Minimum Harmonic Index for Bicyclic Graphs with Given Diameter [J].
Abdolghafourian, Adeleh ;
Iranmanesh, Mohammad A. .
FILOMAT, 2022, 36 (01) :125-140
[2]   ON DP-COLORING OF GRAPHS AND MULTIGRAPHS [J].
Bernshteyn, A. Yu. ;
Kostochka, A. V. ;
Pron, S. P. .
SIBERIAN MATHEMATICAL JOURNAL, 2017, 58 (01) :28-36
[3]   Weak degeneracy of graphs [J].
Bernshteyn, Anton ;
Lee, Eugene .
JOURNAL OF GRAPH THEORY, 2023, 103 (04) :607-634
[4]   Mathematical results on harmonic polynomials [J].
Carballosa, Walter ;
Napoles, Juan E. ;
Rodriguez, Jose M. ;
Rosario, Omar ;
Sigarreta, Jose M. .
COMMUNICATIONS IN COMBINATORICS AND OPTIMIZATION, 2024, 9 (02) :279-295
[5]  
Deng HY, 2020, MATH REP, V22, P11
[6]  
Deng HY, 2018, ARS COMBINATORIA, V137, P257
[7]   Trees with Smaller Harmonic Indices [J].
Deng, Hanyuan ;
Balachandran, S. ;
Venkatakrishnan, Y. B. ;
Balachandar, S. Raja .
FILOMAT, 2016, 30 (11) :2955-2963
[8]   On the harmonic index and the chromatic number of a graph [J].
Deng, Hanyuan ;
Balachandran, S. ;
Ayyaswamy, S. K. ;
Venkatakrishnan, Y. B. .
DISCRETE APPLIED MATHEMATICS, 2013, 161 (16-17) :2740-2744
[9]  
Fajtlowicz S., 1987, Congr. Numer., V60, P187
[10]  
[樊亚飞 Fan Yafei], 2021, [南开大学学报. 自然科学版, Acta Scientiarum Naturalium Universitatis Nankaiensis], V54, P60