3D-printed hydrogels based on amphiphilic chitosan derivative loaded with levofloxacin for wound healing applications

被引:10
作者
Lazaridou, Maria [1 ,2 ]
Moroni, Sofia [1 ]
Klonos, Panagiotis [3 ]
Kyritsis, Apostolos [3 ]
Bikiaris, Dimitrios N. [2 ]
Lamprou, Dimitrios A. [1 ]
机构
[1] Queens Univ Belfast, Sch Pharm, Belfast, North Ireland
[2] Aristotle Univ Thessaloniki, Dept Chem, Thessaloniki, Greece
[3] Natl Tech Univ Athens, Dept Phys, Athens, Greece
关键词
3D printing; cationic acrylate monomer; chitosan; collagen; elastin; gelatin; hydrogels; levofloxacin; wound healing; ANTIBACTERIAL; IMPACT; FILMS; BIOMATERIALS; DELIVERY; GELATIN; ELASTIN;
D O I
10.1080/00914037.2024.2314610
中图分类号
TB3 [工程材料学]; R318.08 [生物材料学];
学科分类号
0805 ; 080501 ; 080502 ;
摘要
Skin wounds not only cause physical pain to patients but also pose an economic burden to society. Consequently, effective approaches to promote skin repair remain a challenge. Specifically, chitosan-based hydrogels are ideal candidates to promote wound healing at different stages and while diminishing the factors that impede this process (such as excessive inflammatory and chronic wound infection). Furthermore, the unique biological properties of a chitosan-based hydrogel enable it to serve as both a wound dressing and a drug delivery system (DDS). In the present work, chitosan (CS) graft copolymer with [2-(methacryloyloxy)ethyl] trimethyl ammonium chloride (CS-MTAC), a cationic monomer with promising antibacterial properties, was synthesized. The successful synthesis of the copolymer was confirmed, while it was studied for its swelling ability and water absorption capacity, as well as for its biocompatibility and antibacterial properties. Expecting to improve its printability, the copolymer was blended with elastin (EL), collagen (COL), and increasing concentrations of gelatin (GEL). The hydrogel with 6% w/v CS, 4% w/w EL, 4% w/w COL and 1% w/v GEL was selected for its potential to be 3D-printed and was neutralized with ammonia vapors or ethanol/sodium hydroxide solution and loaded with levofloxacin. The feasibility of CS-MTAC/EL/COL/GEL bioink, loaded with Levo, as a suitable candidate for wound healing and drug delivery applications, has been demonstrated.
引用
收藏
页码:67 / 84
页数:18
相关论文
共 77 条
[1]  
Abasalizadeh F, 2020, J BIOL ENG, V14, DOI 10.1186/s13036-020-00239-0
[2]   Use of 3D-printed polylactic acid/bioceramic composite scaffolds for bone tissue engineering in preclinical in vivo studies: A systematic review [J].
Alonso-Fernandez, Ivan ;
Haugen, Havard Jostein ;
Lopez-Pena, Monica ;
Gonzalez-Cantalapiedra, Antonio ;
Munoz, Fernando .
ACTA BIOMATERIALIA, 2023, 168 :1-21
[3]   The effect of elastin on chondrocyte adhesion and proliferation on poly (ε-caprolactone)/elastin composites [J].
Annabi, Nasim ;
Fathi, Ali ;
Mithieux, Suzanne M. ;
Martens, Penny ;
Weiss, Anthony S. ;
Dehghani, Fariba .
BIOMATERIALS, 2011, 32 (06) :1517-1525
[4]   FTIR spectroscopy studies on the spontaneous neutralization of chitosan acetate films by moisture conditioning [J].
Araceli Mauricio-Sanchez, Reina ;
Salazar, Ricardo ;
Gabriel Luna-Barcenas, J. ;
Mendoza-Galvan, Arturo .
VIBRATIONAL SPECTROSCOPY, 2018, 94 :1-6
[5]   Tuning the Hydrophilic/Hydrophobic Balance to Control the Structure of Chitosan Films and Their Protein Release Behavior [J].
Becerra, Jose ;
Sudre, Guillaume ;
Royaud, Isabelle ;
Montserret, Roland ;
Verrier, Bernard ;
Rochas, Cyrille ;
Delair, Thierry ;
David, Laurent .
AAPS PHARMSCITECH, 2017, 18 (04) :1070-1083
[6]   Structure and interactions in covalently and ionically crosslinked chitosan hydrogels for biomedical applications [J].
Berger, J ;
Reist, M ;
Mayer, JM ;
Felt, O ;
Peppas, NA ;
Gurny, R .
EUROPEAN JOURNAL OF PHARMACEUTICS AND BIOPHARMACEUTICS, 2004, 57 (01) :19-34
[7]   Study of 3D-printed chitosan scaffold features after different post-printing gelation processes [J].
Bergonzi, Carlo ;
Di Natale, Antonina ;
Zimetti, Francesca ;
Marchi, Cinzia ;
Bianchera, Annalisa ;
Bernini, Franco ;
Silvestri, Marco ;
Bettini, Ruggero ;
Elviri, Lisa .
SCIENTIFIC REPORTS, 2019, 9 (1)
[8]   Wound microbiology and associated approaches to wound management [J].
Bowler, PG ;
Duerden, BI ;
Armstrong, DG .
CLINICAL MICROBIOLOGY REVIEWS, 2001, 14 (02) :244-+
[9]  
BROEKAERT WF, 1995, PLANT PHYSIOL, V108, P1353, DOI [10.1016/j.tourman.2012.10.007, 10.1016/j.carres.2021.108368, 10.1016/j.coelec.2021.100721, 10.1016/j.eclinm.2021.100771, 10.1016/j.chiabu.2021.105188, 10.1016/j.biortech.2014.10.140, 10.1182/blood-2012-08-450627, 10.1016/j.envsoft.2012.10.004, 10.1016/j.jaap.2012.10.004]
[10]   Cationic Antimicrobial Polymers and Their Assemblies [J].
Carmona-Ribeiro, Ana Maria ;
de Melo Carrasco, Leticia Dias .
INTERNATIONAL JOURNAL OF MOLECULAR SCIENCES, 2013, 14 (05) :9906-9946