Sharp estimates for Jacobi heat kernels in conic domains

被引:0
作者
Hanrahan, Dawid [1 ]
Kosz, Dariusz [1 ,2 ]
机构
[1] WUST Wroclaw Univ Sci & Technol, PL-50370 Wroclaw, Poland
[2] BCAM Basque Ctr Appl Math, Bilbao 48009, Spain
关键词
Multidimensional cone; Jacobi heat kernel;
D O I
10.1016/j.jat.2023.105921
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We prove genuinely sharp estimates for the Jacobi heat kernels introduced in the context of the multidimensional cone Vd+1 and its surface Vd+1 0 . To do so, we combine the theory of Jacobi polynomials on the cone explored by Xu with the recent techniques by Nowak, Sjogren, and Szarek, developed to find genuinely sharp estimates for the spherical heat kernel. (c) 2023 Elsevier Inc. All rights reserved.
引用
收藏
页数:11
相关论文
共 13 条
[1]  
[Anonymous], 2013, Springer Monographs in Mathematics
[2]   Heat kernel estimates for the Bessel differential operator in half-line [J].
Bogus, Kamil ;
Malecki, Jacek .
MATHEMATISCHE NACHRICHTEN, 2016, 289 (17-18) :2097-2107
[3]   HEAT KERNEL BOUNDS ON HYPERBOLIC SPACE AND KLEINIAN-GROUPS [J].
DAVIES, EB ;
MANDOUVALOS, N .
PROCEEDINGS OF THE LONDON MATHEMATICAL SOCIETY, 1988, 57 :182-208
[4]  
Dunkl C.F., 2014, Encyclopedia of Mathematics and Its Applications, V155
[5]   Dirichlet Heat Kernel for the Laplacian in a Ball [J].
Malecki, Jacek ;
Serafin, Grzegorz .
POTENTIAL ANALYSIS, 2020, 52 (04) :545-563
[6]   Fourier-Bessel heat kernel estimates [J].
Malecki, Jacek ;
Serafin, Grzegorz ;
Zorawik, Tomasz .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2016, 439 (01) :91-102
[7]   Genuinely sharp heat kernel estimates on compact rank-one symmetric spaces, for Jacobi expansions, on a ball and on a simplex [J].
Nowak, Adam ;
Sjogren, Peter ;
Szarek, Tomasz Z. .
MATHEMATISCHE ANNALEN, 2021, 381 (3-4) :1455-1476
[8]   Sharp estimates of the spherical heat kernel [J].
Nowak, Adam ;
Sjogren, Peter ;
Szarek, Tomasz Z. .
JOURNAL DE MATHEMATIQUES PURES ET APPLIQUEES, 2019, 129 :23-33
[9]   Sharp estimates of the Jacobi heat kernel [J].
Nowak, Adam ;
Sjogren, Peter .
STUDIA MATHEMATICA, 2013, 218 (03) :219-244
[10]   Laplace Dirichlet heat kernels in convex domains [J].
Serafin, G. .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2022, 314 :700-732