A Synthesizing Semantic Characteristics Lung Nodules Classification Method Based on 3D Convolutional Neural Network

被引:2
作者
Dong, Yanan [1 ]
Li, Xiaoqin [1 ]
Yang, Yang [1 ]
Wang, Meng [1 ]
Gao, Bin [1 ]
机构
[1] Beijing Univ Technol, Fac Environm & Life, Beijing 100124, Peoples R China
来源
BIOENGINEERING-BASEL | 2023年 / 10卷 / 11期
基金
国家重点研发计划;
关键词
lung nodule classification; convolutional neural network; multi-view; interpretability; attention mechanism;
D O I
10.3390/bioengineering10111245
中图分类号
Q81 [生物工程学(生物技术)]; Q93 [微生物学];
学科分类号
071005 ; 0836 ; 090102 ; 100705 ;
摘要
Early detection is crucial for the survival and recovery of lung cancer patients. Computer-aided diagnosis system can assist in the early diagnosis of lung cancer by providing decision support. While deep learning methods are increasingly being applied to tasks such as CAD (Computer-aided diagnosis system), these models lack interpretability. In this paper, we propose a convolutional neural network model that combines semantic characteristics (SCCNN) to predict whether a given pulmonary nodule is malignant. The model synthesizes the advantages of multi-view, multi-task and attention modules in order to fully simulate the actual diagnostic process of radiologists. The 3D (three dimensional) multi-view samples of lung nodules are extracted by spatial sampling method. Meanwhile, semantic characteristics commonly used in radiology reports are used as an auxiliary task and serve to explain how the model interprets. The introduction of the attention module in the feature fusion stage improves the classification of lung nodules as benign or malignant. Our experimental results using the LIDC-IDRI (Lung Image Database Consortium and Image Database Resource Initiative) show that this study achieves 95.45% accuracy and 97.26% ROC (Receiver Operating Characteristic) curve area. The results show that the method we proposed not only realize the classification of benign and malignant compared to standard 3D CNN approaches but can also be used to intuitively explain how the model makes predictions, which can assist clinical diagnosis.
引用
收藏
页数:20
相关论文
共 49 条
[1]   User's guide to correlation coefficients [J].
Akoglu, Haldun .
TURKISH JOURNAL OF EMERGENCY MEDICINE, 2018, 18 (03) :91-93
[2]   3D axial-attention for lung nodule classification [J].
Al-Shabi, Mundher ;
Shak, Kelvin ;
Tan, Maxine .
INTERNATIONAL JOURNAL OF COMPUTER ASSISTED RADIOLOGY AND SURGERY, 2021, 16 (08) :1319-1324
[3]   Segmentation of male pelvic organs on computed tomography with a deep neural network fine-tuned by a level-set method [J].
Almeida, Goncalo ;
Figueira, Ana Rita ;
Lencart, Joana ;
Tavares, Joao Manuel R. S. .
COMPUTERS IN BIOLOGY AND MEDICINE, 2022, 140
[4]   The lung image database consortium (LIDC): Ensuring the integrity of expert-defined "truth" [J].
Armato, Samuel G., III ;
Roberts, Rachael Y. ;
McNitt-Gray, Michael F. ;
Meyer, Charles R. ;
Reeves, Anthony P. ;
McLennan, Geoffrey ;
Engelmann, Roger M. ;
Bland, Peyton H. ;
Aberle, Denise R. ;
Kazerooni, Ella A. ;
MacMahon, Heber ;
van Beek, Edwin J. R. ;
Yankelevitz, David ;
Croft, Barbara Y. ;
Clarke, Laurence P. .
ACADEMIC RADIOLOGY, 2007, 14 (12) :1455-1463
[5]   The Lung Image Database Consortium, (LIDC) and Image Database Resource Initiative (IDRI): A Completed Reference Database of Lung Nodules on CT Scans [J].
Armato, Samuel G., III ;
McLennan, Geoffrey ;
Bidaut, Luc ;
McNitt-Gray, Michael F. ;
Meyer, Charles R. ;
Reeves, Anthony P. ;
Zhao, Binsheng ;
Aberle, Denise R. ;
Henschke, Claudia I. ;
Hoffman, Eric A. ;
Kazerooni, Ella A. ;
MacMahon, Heber ;
van Beek, Edwin J. R. ;
Yankelevitz, David ;
Biancardi, Alberto M. ;
Bland, Peyton H. ;
Brown, Matthew S. ;
Engelmann, Roger M. ;
Laderach, Gary E. ;
Max, Daniel ;
Pais, Richard C. ;
Qing, David P-Y ;
Roberts, Rachael Y. ;
Smith, Amanda R. ;
Starkey, Adam ;
Batra, Poonam ;
Caligiuri, Philip ;
Farooqi, Ali ;
Gladish, Gregory W. ;
Jude, C. Matilda ;
Munden, Reginald F. ;
Petkovska, Iva ;
Quint, Leslie E. ;
Schwartz, Lawrence H. ;
Sundaram, Baskaran ;
Dodd, Lori E. ;
Fenimore, Charles ;
Gur, David ;
Petrick, Nicholas ;
Freymann, John ;
Kirby, Justin ;
Hughes, Brian ;
Casteele, Alessi Vande ;
Gupte, Sangeeta ;
Sallam, Maha ;
Heath, Michael D. ;
Kuhn, Michael H. ;
Dharaiya, Ekta ;
Burns, Richard ;
Fryd, David S. .
MEDICAL PHYSICS, 2011, 38 (02) :915-931
[6]  
Attallah Omneya, 2022, ICICM 2022: 2022 The 12th International Conference on Information Communication and Management, P25, DOI 10.1145/3551690.3551695
[7]   Can we open the black box of AI? [J].
Castelvecchi D. .
Nature, 2016, 538 (7623) :20-23
[8]   A review of medical image data augmentation techniques for deep learning applications [J].
Chlap, Phillip ;
Min, Hang ;
Vandenberg, Nym ;
Dowling, Jason ;
Holloway, Lois ;
Haworth, Annette .
JOURNAL OF MEDICAL IMAGING AND RADIATION ONCOLOGY, 2021, 65 (05) :545-563
[9]   Towards automatic pulmonary nodule management in lung cancer screening with deep learning [J].
Ciompi, Francesco ;
Chung, Kaman ;
van Riel, Sarah J. ;
Setio, Arnaud Arindra Adiyoso ;
Gerke, Paul K. ;
Jacobs, Colin ;
Scholten, Ernst Th. ;
Schaefer-Prokop, Cornelia ;
Wille, Mathilde M. W. ;
Marchiano, Alfonso ;
Pastorino, Ugo ;
Prokop, Mathias ;
van Ginneken, Bram .
SCIENTIFIC REPORTS, 2017, 7
[10]   Solitary pulmonary nodules: Part I. Morphologic evaluation for differentiation of benign and malignant lesions [J].
Erasmus, JJ ;
Connolly, JE ;
McAdams, HP ;
Roggli, VL .
RADIOGRAPHICS, 2000, 20 (01) :43-58