Optimization of vibration control using a hybrid scheme with sliding-mode and positive position feedback

被引:1
|
作者
Enriquez-Zarate, J. [1 ,7 ]
Gomez-Penate, S. [2 ]
Hernandez, C. [3 ]
Villarreal-Valderrama, Francisco [4 ]
Velazquez, R. [5 ]
Trujillo, Leonardo [6 ]
机构
[1] AP Engn Innovac Tecnol Energias SA CV, Ixtepec, Oaxaca, Mexico
[2] Tecnol Nacl Mexico, Inst Tecnol Tuxtla Gutierrez, Tuxtla Gutierrez, Mexico
[3] IIMAS UNAM, Dept Comp, Mexico City, Mexico
[4] Univ Autonoma Nuevo Leon, Fac Ingn Mecan & Elect, Monterrey, Nuevo Leon, Mexico
[5] Univ Panamer, Fac Ingn, Aguascalientes, Aguascalientes, Mexico
[6] Tecnol Nacl Mexico, IT Tijuana, Tijuana 22414, Mexico
[7] AP Engn Innovac Tecnol Energias SA CV, Sexta Secc, Cd Ixtepec, Oaxaca, Mexico
关键词
active vibration control; nonlinear system; optimization; positive position feedback; sliding mode control; SUPPRESSION; SYSTEM;
D O I
10.1002/oca.3086
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
This article presents the design of a nonlinear hybrid controller for an underactuated Duffing oscillator with 2 degrees of freedom. The main control purpose is to reduce the frequency-response to specific resonant-frequencies while maintaining its robustness to external disturbances. The resulting hybrid controller uses sliding mode control (SMC) with a positive position feedback (PPF) scheme. This is structured such that the SMC provides system robustness and tracking, while the PPF allows damping specific resonant frequencies. The system was evaluated using frequency sweeps in terms of acceleration in the second degree of freedom. In this case, the control input is applied through the first degree of freedom. Moreover, multi-objective optimization is implemented to tune of the control parameters. Simulation results show that the system response to external vibrations can be reduced up to 83.88% by using the proposed PPF + SMC scheme.
引用
收藏
页码:1030 / 1044
页数:15
相关论文
共 50 条
  • [1] Optimal sliding-mode control scheme for the position tracking servo control system
    Jing, Jiang
    ROBOTICS, CONTROL AND MANUFACTURING TECHNOLOGY, 2008, : 47 - 51
  • [2] Stability analysis of sliding-mode feedback control
    Clarke, Francis H.
    Vinter, Richard B.
    CONTROL AND CYBERNETICS, 2009, 38 (04): : 1169 - 1192
  • [3] Sliding-Mode Output Feedback Control Design
    Choi, Han Ho
    IEEE TRANSACTIONS ON INDUSTRIAL ELECTRONICS, 2008, 55 (11) : 4047 - 4054
  • [4] Positive filter synthesis for sliding-mode control
    Nascimento, Felipe Trindade
    Cunha, Jose Paulo V. S.
    IET CONTROL THEORY AND APPLICATIONS, 2019, 13 (07) : 1006 - 1014
  • [5] Vibration control of a structure using sliding-mode hedge-algebras-based controller
    Duc-Trung Tran
    Van-Binh Bui
    Tung-Anh Le
    Hai-Le Bui
    SOFT COMPUTING, 2019, 23 (06) : 2047 - 2059
  • [6] Design and Adaptive Sliding-Mode Control of Hybrid Magnetic Bearings
    Zad, H. Sheh
    Khan, Talha Irfan
    Lazoglu, Ismail
    IEEE TRANSACTIONS ON INDUSTRIAL ELECTRONICS, 2018, 65 (03) : 2537 - 2547
  • [7] Vibration Suppression of Yarns via Sliding-mode Control
    Lin, Hong
    Feng, Zhihua
    Lan, Xiangjun
    FUNCTIONAL MANUFACTURING TECHNOLOGIES AND CEEUSRO II, 2011, 464 : 268 - +
  • [8] Output feedback sliding-mode control of linear systems
    Jiang, YA
    Hesketh, T
    Clements, DJ
    PROCEEDINGS OF THE 1997 AMERICAN CONTROL CONFERENCE, VOLS 1-6, 1997, : 2145 - 2149
  • [9] Active vibration absorbers using Generalized PI and sliding-mode control techniques
    Beltrán-Carbajal, F
    Silva-Navarro, G
    Sira-Ramírez, H
    PROCEEDINGS OF THE 2003 AMERICAN CONTROL CONFERENCE, VOLS 1-6, 2003, : 791 - 796
  • [10] Robust sliding-mode control with disturbance attenuation using only output feedback
    Chang, JL
    JSME INTERNATIONAL JOURNAL SERIES C-MECHANICAL SYSTEMS MACHINE ELEMENTS AND MANUFACTURING, 2003, 46 (01) : 239 - 244