Refractive indices and extinction coefficients of p-type doped Germanium wafers for photovoltaic and thermophotovoltaic devices

被引:4
作者
Blanco, E. [1 ,2 ]
Martin, P. [3 ]
Dominguez, M. [1 ,2 ,3 ]
Fernandez-Palacios, P. [3 ]
Lombardero, I. [3 ,4 ]
Sanchez-Perez, C. [3 ]
Garcia, I. [3 ]
Algora, C. [3 ]
Gabas, M. [3 ]
机构
[1] Univ Cadiz, Dept Fis Mat Condensada, E-11510 Cadiz, Spain
[2] Univ Cadiz, IMEYMAT Inst Res Electron Microscopy & Mat, E-11510 Cadiz, Spain
[3] Univ Politecn Madrid, Inst Energia Solar, Madrid 28040, Spain
[4] MN8 Energy, Pozuelo De Alarcon 28224, Madrid, Spain
关键词
Ge wafers; Spectroscopic ellipsometry; Complex refractive index; Ge solar cells; Thermophotovoltaics; Solar cell modelling; GRAPHENE; GROWTH; LIGHT;
D O I
10.1016/j.solmat.2023.112612
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
Our work is primarily driven by the absence of optical parameters for p-type Ge wafers, adaptable to any specific doping value, and, at the same time, able to cover any application from infrared to ultraviolet regime. To address this, we have determined the complex refractive indices of p-type commercial Ge wafers through a wide spectral range (200-25000 nm) employing spectroscopic ellipsometry and transmittance measurements. The doping levels in these wafers vary between 1015 and 1018 cm-3, which are most commonly used in photovoltaic, thermophotovoltaic and optoelectronic applications. Our data fitting procedure resulted in a dielectric function that successfully reproduces not only the critical points associated with interband transitions above the bandgap, but also absorption features below the bandgap connected to intraband processes. Consequently, we obtained the complex refraction indices of these Ge wafers as a function of dopant concentration, and these have been corroborated through experimental reflectance and transmittance measurements. Additionally, we achieved a successful validation of these refractive indices by simulating the external quantum efficiency of Ge single-junction solar cell with two different thickness fabricated on a Ge wafer with a different doping level than those analyzed in this study.
引用
收藏
页数:9
相关论文
共 31 条
[1]  
Baker J., 2022, 2022 IEEE PHOT C IPC, DOI [10.1109/IPC53466.2022.9975478, DOI 10.1109/IPC53466.2022.9975478]
[2]  
Barrutia L, 2018, SPAN CONF ELECTRON
[3]   NEW INFRARED ABSORPTION BANDS IN P-TYPE GERMANIUM [J].
BRIGGS, HB ;
FLETCHER, RC .
PHYSICAL REVIEW, 1952, 87 (06) :1130-1131
[4]   ABSORPTION OF INFRARED LIGHT BY FREE CARRIERS IN GERMANIUM [J].
BRIGGS, HB ;
FLETCHER, RC .
PHYSICAL REVIEW, 1953, 91 (06) :1342-1346
[5]  
Cardona M., 1969, Solid State Physics, P55
[6]   Generalized matrix method for calculation of internal light energy flux in mixed coherent and incoherent multilayers [J].
Centurioni, E .
APPLIED OPTICS, 2005, 44 (35) :7532-7539
[7]   BAND-GAP RENORMALIZATION IN SEMICONDUCTOR QUANTUM-WELLS [J].
DASSARMA, S ;
JALABERT, R ;
YANG, SRE .
PHYSICAL REVIEW B, 1990, 41 (12) :8288-8294
[8]   CYCLOTRON RESONANCE EXPERIMENTS IN SILICON AND GERMANIUM [J].
DEXTER, RN ;
ZEIGER, HJ ;
LAX, B .
PHYSICAL REVIEW, 1956, 104 (03) :637-644
[9]   Temperature dependent dielectric function and direct bandgap of Ge [J].
Emminger, Carola ;
Abadizaman, Farzin ;
Samarasingha, Nuwanjula S. ;
Tiwald, Thomas E. ;
Zollner, Stefan .
JOURNAL OF VACUUM SCIENCE & TECHNOLOGY B, 2020, 38 (01)
[10]   Analysis of the surface state of epi-ready Ge wafers [J].
Gabas, M. ;
Palanco, S. ;
Bijani, S. ;
Barrigon, E. ;
Algora, C. ;
Rey-Stolle, I. ;
Garcia, I. ;
Ramos-Barrado, J. R. .
APPLIED SURFACE SCIENCE, 2012, 258 (20) :8166-8170