Generating Virtual Training Labels for Crop Classification from Fused Sentinel-1 and Sentinel-2 Time Series

被引:0
|
作者
Teimouri, Maryam [1 ,3 ]
Mokhtarzade, Mehdi [1 ]
Baghdadi, Nicolas [2 ]
Heipke, Christian [3 ]
机构
[1] KN Toosi Univ Technol, Dept Photogrammetry & Remote Sensing, Tehran, Iran
[2] Univ Montpellier, INRAE, UMR, TETIS, 500 Rue Francois Breton, F-34093 Montpellier 5, France
[3] Leibniz Univ Hannover, Inst Photogrammetry & GeoInformat, Hannover, Germany
来源
PFG-JOURNAL OF PHOTOGRAMMETRY REMOTE SENSING AND GEOINFORMATION SCIENCE | 2023年 / 91卷 / 06期
关键词
Virtual training labels; Fusion; Optical and radar image time series; 3D-CNN; Crop classification; SEMANTIC SEGMENTATION; IMAGES; ATTENTION; MODELS; COVER;
D O I
10.1007/s41064-023-00256-w
中图分类号
TP7 [遥感技术];
学科分类号
081102 ; 0816 ; 081602 ; 083002 ; 1404 ;
摘要
Convolutional neural networks (CNNs) have shown results superior to most traditional image understanding approaches in many fields, incl. crop classification from satellite time series images. However, CNNs require a large number of training samples to properly train the network. The process of collecting and labeling such samples using traditional methods can be both, time-consuming and costly. To address this issue and improve classification accuracy, generating virtual training labels (VTL) from existing ones is a promising solution. To this end, this study proposes a novel method for generating VTL based on sub-dividing the training samples of each crop using self-organizing maps (SOM), and then assigning labels to a set of unlabeled pixels based on the distance to these sub-classes. We apply the new method to crop classification from Sentinel images. A three-dimensional (3D) CNN is utilized for extracting features from the fusion of optical and radar time series. The results of the evaluation show that the proposed method is effective in generating VTL, as demonstrated by the achieved overall accuracy (OA) of 95.3% and kappa coefficient (KC) of 94.5%, compared to 91.3% and 89.9% for a solution without VTL. The results suggest that the proposed method has the potential to enhance the classification accuracy of crops using VTL.
引用
收藏
页码:413 / 423
页数:11
相关论文
共 50 条
  • [31] Integration of Sentinel-1 and Sentinel-2 for Classification and LULC Mapping in the Urban Area of Belem, Eastern Brazilian Amazon
    Tavares, Paulo Amador
    Santos Beltrao, Norma Ely
    Guimaraes, Ulisses Silva
    Teodoro, Ana Claudia
    SENSORS, 2019, 19 (05)
  • [32] Using Time Series Sentinel-1 Images for Object-Oriented Crop Classification in Google Earth Engine
    Luo, Chong
    Qi, Beisong
    Liu, Huanjun
    Guo, Dong
    Lu, Lvping
    Fu, Qiang
    Shao, Yiqun
    REMOTE SENSING, 2021, 13 (04) : 1 - 19
  • [33] Mapping Integrated Crop-Livestock Systems Using Fused Sentinel-2 and PlanetScope Time Series and Deep Learning
    Werner, Joao P. S.
    Belgiu, Mariana
    Bueno, Inacio T.
    Dos Reis, Aliny A.
    Toro, Ana P. S. G. D.
    Antunes, Joao F. G.
    Stein, Alfred
    Lamparelli, Rubens A. C.
    Magalhaes, Paulo S. G.
    Coutinho, Alexandre C.
    Esquerdo, Julio C. D. M.
    Figueiredo, Gleyce K. D. A.
    REMOTE SENSING, 2024, 16 (08)
  • [34] Integration of Sentinel-1 and Sentinel-2 Data for Land Cover Mapping Using W-Net
    Gargiulo, Massimiliano
    Dell'Aglio, Domenico A. G.
    Iodice, Antonio
    Riccio, Daniele
    Ruello, Giuseppe
    SENSORS, 2020, 20 (10)
  • [35] Fast Urban Land Cover Mapping Exploiting Sentinel-1 and Sentinel-2 Data
    Petrushevsky, Naomi
    Manzoni, Marco
    Monti-Guarnieri, Andrea
    REMOTE SENSING, 2022, 14 (01)
  • [36] Improving Co-Registration for Sentinel-1 SAR and Sentinel-2 Optical Images
    Ye, Yuanxin
    Yang, Chao
    Zhu, Bai
    Zhou, Liang
    He, Youquan
    Jia, Huarong
    REMOTE SENSING, 2021, 13 (05) : 1 - 27
  • [37] A combination of Sentinel-1 RADAR and Sentinel-2 multispectral data improves classification of morphologically similar savanna woody plants
    Fundisi, Emmanuel
    Tesfamichael, Solomon G.
    Ahmed, Fethi
    EUROPEAN JOURNAL OF REMOTE SENSING, 2022, 55 (01) : 372 - 387
  • [38] Cross-Regional Crop Classification Based on Sentinel-2
    He, Jie
    Zeng, Wenzhi
    Ao, Chang
    Xing, Weimin
    Gaiser, Thomas
    Srivastava, Amit Kumar
    AGRONOMY-BASEL, 2024, 14 (05):
  • [39] Data integration of Sentinel-1 and Sentinel-2 for evaluating vegetation biomass and water status
    Pilia, S.
    Fontanelli, G.
    Santurri, L.
    Ramat, G.
    Baroni, F.
    Santi, E.
    Lapini, A.
    Pettinato, S.
    Paloscia, S.
    PROCEEDINGS OF 2023 IEEE INTERNATIONAL WORKSHOP ON METROLOGY FOR AGRICULTURE AND FORESTRY, METROAGRIFOR, 2023, : 694 - 698
  • [40] Fusion of Multi-Temporal PAZ and Sentinel-1 Data for Crop Classification
    Busquier, Mario
    Valcarce-Dineiro, Ruben
    Lopez-Sanchez, Juan M.
    Plaza, Javier
    Sanchez, Nilda
    Arias-Perez, Benjamin
    REMOTE SENSING, 2021, 13 (19)