PFG-JOURNAL OF PHOTOGRAMMETRY REMOTE SENSING AND GEOINFORMATION SCIENCE
|
2023年
/
91卷
/
06期
关键词:
Virtual training labels;
Fusion;
Optical and radar image time series;
3D-CNN;
Crop classification;
SEMANTIC SEGMENTATION;
IMAGES;
ATTENTION;
MODELS;
COVER;
D O I:
10.1007/s41064-023-00256-w
中图分类号:
TP7 [遥感技术];
学科分类号:
081102 ;
0816 ;
081602 ;
083002 ;
1404 ;
摘要:
Convolutional neural networks (CNNs) have shown results superior to most traditional image understanding approaches in many fields, incl. crop classification from satellite time series images. However, CNNs require a large number of training samples to properly train the network. The process of collecting and labeling such samples using traditional methods can be both, time-consuming and costly. To address this issue and improve classification accuracy, generating virtual training labels (VTL) from existing ones is a promising solution. To this end, this study proposes a novel method for generating VTL based on sub-dividing the training samples of each crop using self-organizing maps (SOM), and then assigning labels to a set of unlabeled pixels based on the distance to these sub-classes. We apply the new method to crop classification from Sentinel images. A three-dimensional (3D) CNN is utilized for extracting features from the fusion of optical and radar time series. The results of the evaluation show that the proposed method is effective in generating VTL, as demonstrated by the achieved overall accuracy (OA) of 95.3% and kappa coefficient (KC) of 94.5%, compared to 91.3% and 89.9% for a solution without VTL. The results suggest that the proposed method has the potential to enhance the classification accuracy of crops using VTL.
机构:
Univ Liege, Geomat Unit, Fac Sci, Liege, Belgium
KTH Royal Inst Technol, Div Geoinformat, Stockholm, SwedenUniv Liege, Geomat Unit, Fac Sci, Liege, Belgium
Nascetti, Andrea
Yadav, Ritu
论文数: 0引用数: 0
h-index: 0
机构:
KTH Royal Inst Technol, Div Geoinformat, Stockholm, SwedenUniv Liege, Geomat Unit, Fac Sci, Liege, Belgium
Yadav, Ritu
Ban, Yifang
论文数: 0引用数: 0
h-index: 0
机构:
KTH Royal Inst Technol, Div Geoinformat, Stockholm, SwedenUniv Liege, Geomat Unit, Fac Sci, Liege, Belgium
Ban, Yifang
IGARSS 2023 - 2023 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM,
2023,
: 2831
-
2834
机构:
Chinese Acad Sci, Inst Remote Sensing & Digital Earth, Key Lab Digital Earth Sci, Beijing 100094, Peoples R China
Univ Chinese Acad Sci, Beijing 100049, Peoples R ChinaChinese Acad Sci, Inst Remote Sensing & Digital Earth, Key Lab Digital Earth Sci, Beijing 100094, Peoples R China
Xu, Lu
Zhang, Hong
论文数: 0引用数: 0
h-index: 0
机构:
Chinese Acad Sci, Inst Remote Sensing & Digital Earth, Key Lab Digital Earth Sci, Beijing 100094, Peoples R ChinaChinese Acad Sci, Inst Remote Sensing & Digital Earth, Key Lab Digital Earth Sci, Beijing 100094, Peoples R China
Zhang, Hong
Wang, Chao
论文数: 0引用数: 0
h-index: 0
机构:
Chinese Acad Sci, Inst Remote Sensing & Digital Earth, Key Lab Digital Earth Sci, Beijing 100094, Peoples R China
Univ Chinese Acad Sci, Beijing 100049, Peoples R ChinaChinese Acad Sci, Inst Remote Sensing & Digital Earth, Key Lab Digital Earth Sci, Beijing 100094, Peoples R China
Wang, Chao
Zhang, Bo
论文数: 0引用数: 0
h-index: 0
机构:
Chinese Acad Sci, Inst Remote Sensing & Digital Earth, Key Lab Digital Earth Sci, Beijing 100094, Peoples R ChinaChinese Acad Sci, Inst Remote Sensing & Digital Earth, Key Lab Digital Earth Sci, Beijing 100094, Peoples R China
Zhang, Bo
Liu, Meng
论文数: 0引用数: 0
h-index: 0
机构:
Chinese Acad Sci, Inst Remote Sensing & Digital Earth, Key Lab Digital Earth Sci, Beijing 100094, Peoples R ChinaChinese Acad Sci, Inst Remote Sensing & Digital Earth, Key Lab Digital Earth Sci, Beijing 100094, Peoples R China
机构:
Chengdu Univ Technol, Key Lab Geosci Spatial Informat Technol, Minist Land & Resources China, Chengdu 610059, Peoples R ChinaChengdu Univ Technol, Key Lab Geosci Spatial Informat Technol, Minist Land & Resources China, Chengdu 610059, Peoples R China
He, Shan
Shao, Huaiyong
论文数: 0引用数: 0
h-index: 0
机构:
Chengdu Univ Technol, Key Lab Geosci Spatial Informat Technol, Minist Land & Resources China, Chengdu 610059, Peoples R ChinaChengdu Univ Technol, Key Lab Geosci Spatial Informat Technol, Minist Land & Resources China, Chengdu 610059, Peoples R China
Shao, Huaiyong
Xian, Wei
论文数: 0引用数: 0
h-index: 0
机构:
Chengdu Univ Informat Technol, Coll Resources & Environm, Chengdu 610225, Peoples R ChinaChengdu Univ Technol, Key Lab Geosci Spatial Informat Technol, Minist Land & Resources China, Chengdu 610059, Peoples R China
Xian, Wei
Yin, Ziqiang
论文数: 0引用数: 0
h-index: 0
机构:
Chengdu Univ Technol, Coll Ecol & Environm, Chengdu 610059, Peoples R ChinaChengdu Univ Technol, Key Lab Geosci Spatial Informat Technol, Minist Land & Resources China, Chengdu 610059, Peoples R China
Yin, Ziqiang
You, Meng
论文数: 0引用数: 0
h-index: 0
机构:
Guangyuan Nat Resources Bur, Lizhou Branch, Guangyuan 628017, Peoples R ChinaChengdu Univ Technol, Key Lab Geosci Spatial Informat Technol, Minist Land & Resources China, Chengdu 610059, Peoples R China
You, Meng
Zhong, Jialong
论文数: 0引用数: 0
h-index: 0
机构:
Chengdu Univ Technol, Coll Management Sci, Chengdu 610059, Peoples R ChinaChengdu Univ Technol, Key Lab Geosci Spatial Informat Technol, Minist Land & Resources China, Chengdu 610059, Peoples R China
Zhong, Jialong
Qi, Jiaguo
论文数: 0引用数: 0
h-index: 0
机构:
Michigan State Univ, Ctr Global Change & Earth Observat, E Lansing, MI 48824 USAChengdu Univ Technol, Key Lab Geosci Spatial Informat Technol, Minist Land & Resources China, Chengdu 610059, Peoples R China