Hidden becomes clear: Optical remote sensing of vegetation reveals water table dynamics in northern peatlands

被引:26
作者
Burdun, Iuliia [1 ]
Bechtold, Michel [2 ]
Aurela, Mika [3 ]
De Lannoy, Gabrielle [2 ]
Desai, Ankur R. [4 ]
Humphreys, Elyn [5 ]
Kareksela, Santtu [6 ]
Komisarenko, Viacheslav [7 ,8 ]
Liimatainen, Maarit [9 ,10 ]
Marttila, Hannu [9 ]
Minkkinen, Kari [11 ]
Nilsson, Mats B. [12 ]
Ojanen, Paavo [10 ,11 ]
Salko, Sini-Selina [1 ]
Tuittila, Eeva-Stiina [13 ]
Uuemaa, Evelyn [7 ]
Rautiainen, Miina [1 ]
机构
[1] Aalto Univ, Sch Engn, POB 14100, FI-00076 Aalto, Finland
[2] Katholieke Univ Leuven, Heverlee, Belgium
[3] Finnish Meteorol Inst, Helsinki, Finland
[4] Univ Wisconsin, Madison, WI USA
[5] Carleton Univ, Dept Geog & Environm Studies, Ottawa, ON, Canada
[6] Metsahallitus, Jyvaskyla, Finland
[7] Univ Tartu, Tartu, Estonia
[8] Univ Ghent, Ghent, Belgium
[9] Univ Oulu, Oulu, Finland
[10] Nat Resources Inst Finland, Oulu, Finland
[11] Univ Helsinki, Dept Forest Sci, Helsinki, Finland
[12] Swedish Univ Agr Sci, Umea, Sweden
[13] Univ Eastern Finland, Sch Forest Sci, Joensuu, Finland
基金
欧洲研究理事会; 芬兰科学院;
关键词
Bogs; Fens; Sphagnum; Vegetation cover; Soil moisture; Wetland; SWIR; SPECTRAL REFLECTANCE MEASUREMENTS; SOIL-MOISTURE; TRAPEZOID MODEL; BOREAL WETLAND; SPHAGNUM MOSS; SATELLITE; CHLOROPHYLL; STRESS; DEPTH; RESTORATION;
D O I
10.1016/j.rse.2023.113736
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
The water table and its dynamics are one of the key variables that control peatland greenhouse gas exchange. Here, we tested the applicability of the Optical TRApezoid Model (OPTRAM) to monitor the temporal fluctuations in water table over intact, restored (previously forestry-drained), and drained (under agriculture) northern peatlands in Finland, Estonia, Sweden, Canada, and the USA. More specifically, we studied the potential and limitations of OPTRAM using water table data from 2018 through 2021, across 53 northern peatland sites, i.e., covering the largest geographical extent used in OPTRAM studies so far. For this, we calculated OPTRAM based on Sentinel-2 data with the Google Earth Engine cloud platform. First, we found that the choice of vegetation index utilised in OPTRAM does not significantly affect OPTRAM performance in peatlands. Second, we revealed that the tree cover density is a major factor controlling the sensitivity of OPTRAM to water table dynamics in peatlands. Tree cover density greater than 50% led to a clear decrease in OPTRAM performance. Finally, we demonstrated that the relationship between water table and OPTRAM often disappears when WT deepens (ranging between 0 to −100 cm, depending on the site location). We identified that the water table where OPTRAM ceases to be sensitive to variations is highly site-specific. Overall, our results support the application of OPTRAM to monitor water table dynamics in intact and restored northern peatlands with low tree cover density (below 50%) when the water table varies from shallow to moderately deep. Our study makes significant steps towards the broader implementation of optical remote sensing data for monitoring peatlands subsurface moisture conditions over the northern region. © 2023
引用
收藏
页数:14
相关论文
共 105 条
[1]   Retrieving soil moisture in rainfed and irrigated fields using Sentinel-2 observations and a modified OPTRAM approach [J].
Ambrosone, Mariapaola ;
Matese, Alessandro ;
Di Gennaro, Salvatore Filippo ;
Gioli, Beniamino ;
Tudoroiu, Marin ;
Genesio, Lorenzo ;
Miglietta, Franco ;
Baronti, Silvia ;
Maienza, Anita ;
Ungaro, Fabrizio ;
Toscano, Piero .
INTERNATIONAL JOURNAL OF APPLIED EARTH OBSERVATION AND GEOINFORMATION, 2020, 89
[2]   Evaluation of phenospectral dynamics with Sentinel-2A using a bottom-up approach in a northern ombrotrophic peatland [J].
Arroyo-Mora, J. P. ;
Kalacska, M. ;
Soffer, R. ;
Ifimov, G. ;
Leblanc, G. ;
Schaaf, E. S. ;
Lucanus, O. .
REMOTE SENSING OF ENVIRONMENT, 2018, 216 :544-560
[3]   Spectro-spatial relationship between UAV derived high resolution DEM and SWIR hyperspectral data: application to an ombrotrophic peatland [J].
Arroyo-Mora, J. Pablo ;
Kalacska, Margaret ;
Lucanus, Oliver ;
Soffer, Raymond ;
Leblanc, George .
REMOTE SENSING FOR AGRICULTURE, ECOSYSTEMS, AND HYDROLOGY XIX, 2017, 10421
[4]   On the Potential of Sentinel-1 for High Resolution Monitoring of Water Table Dynamics in Grasslands on Organic Soils [J].
Asmuss, Tina ;
Bechtold, Michel ;
Tiemeyer, Baerbel .
REMOTE SENSING, 2019, 11 (14)
[5]   A New Optical Remote Sensing Technique for High-Resolution Mapping of Soil Moisture [J].
Babaeian, Ebrahim ;
Sidike, Paheding ;
Newcomb, Maria S. ;
Maimaitijiang, Maitiniyazi ;
White, Scott A. ;
Demieville, Jeffrey ;
Ward, Richard W. ;
Sadeghi, Morteza ;
LeBauer, David S. ;
Jones, Scott B. ;
Sagan, Vasit ;
Tuller, Markus .
FRONTIERS IN BIG DATA, 2019, 2
[6]   Mapping soil moisture with the OPtical TRApezoid Model (OPTRAM) based on long-term MODIS observations [J].
Babaeian, Ebrahim ;
Sadeghi, Morteza ;
Franz, Trenton E. ;
Jones, Scott ;
Tuller, Markus .
REMOTE SENSING OF ENVIRONMENT, 2018, 211 :425-440
[7]   Continuous Wavelet Analysis for Spectroscopic Determination of Subsurface Moisture and Water-Table Height in Northern Peatland Ecosystems [J].
Banskota, Asim ;
Falkowski, Michael J. ;
Smith, Alistair M. S. ;
Kane, Evan S. ;
Meingast, Karl M. ;
Bourgeau-Chavez, Laura L. ;
Miller, Mary Ellen ;
French, Nancy H. .
IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2017, 55 (03) :1526-1536
[8]   Improved groundwater table and L-band brightness temperature estimates for Northern Hemisphere peatlands using new model physics and SMOS observations in a global data assimilation framework [J].
Bechtold, M. ;
De Lannoy, G. J. M. ;
Reichle, R. H. ;
Roose, D. ;
Balliston, N. ;
Burdun, I ;
Devito, K. ;
Kurbatova, J. ;
Strack, M. ;
Zarov, E. A. .
REMOTE SENSING OF ENVIRONMENT, 2020, 246
[9]   PEAT-CLSM: A Specific Treatment of Peatland Hydrology in the NASA Catchment Land Surface Model [J].
Bechtold, M. ;
De Lannoy, G. J. M. ;
Koster, R. D. ;
Reichle, R. H. ;
Mahanama, S. P. ;
Bleuten, W. ;
Bourgault, M. A. ;
Bruemmer, C. ;
Burdun, I ;
Desai, A. R. ;
Devito, K. ;
Gruenwald, T. ;
Grygoruk, M. ;
Humphreys, E. R. ;
Klatt, J. ;
Kurbatova, J. ;
Lohila, A. ;
Munir, T. M. ;
Nilsson, M. B. ;
Price, J. S. ;
Roehl, M. ;
Schneider, A. ;
Tiemeyer, B. .
JOURNAL OF ADVANCES IN MODELING EARTH SYSTEMS, 2019, 11 (07) :2130-2162
[10]   Inferring Water Table Depth Dynamics from ENVISAT-ASAR C-Band Backscatter over a Range of Peatlands from Deeply-Drained to Natural Conditions [J].
Bechtold, Michel ;
Schlaffer, Stefan ;
Tiemeyer, Baerbel ;
De Lannoy, Gabrielle .
REMOTE SENSING, 2018, 10 (04)