Computational prediction of MHC anchor locations guides neoantigen identification and prioritization

被引:17
作者
Xia, Huiming [1 ,2 ]
McMichael, Joshua [2 ]
Becker-Hapak, Michelle [1 ]
Onyeador, Onyinyechi C. [1 ]
Buchli, Rico [3 ]
McClain, Ethan [1 ]
Pence, Patrick [1 ]
Supabphol, Suangson [4 ,5 ]
Richters, Megan M. [1 ,2 ]
Basu, Anamika [2 ]
Ramirez, Cody A. [1 ,2 ]
Puig-Saus, Cristina [6 ,7 ,8 ]
Cotto, Kelsy C. [1 ,2 ]
Freshour, Sharon L. [1 ,2 ]
Hundal, Jasreet [1 ,2 ]
Kiwala, Susanna [2 ]
Goedegebuure, S. Peter [4 ,9 ]
Johanns, Tanner M. [1 ]
Dunn, Gavin P. [10 ]
Ribas, Antoni [6 ,7 ,8 ]
Miller, Christopher A. [1 ,9 ]
Gillanders, William E. [4 ,9 ]
Fehniger, Todd A. [1 ]
Griffith, Obi L. [1 ,2 ,9 ,11 ]
Griffith, Malachi [1 ,2 ,9 ,11 ]
机构
[1] Washington Univ, Div Oncol, Dept Med, Sch Med, St Louis, MO 63130 USA
[2] Washington Univ, McDonnell Genome Inst, Sch Med, St Louis, MO 63130 USA
[3] Pure Prot LLC, Oklahoma City, OK 73104 USA
[4] Washington Univ, Dept Surg, Sch Med, St Louis, MO 63130 USA
[5] Chulalongkorn Univ, Fac Med, Ctr Excellence Syst Biol, Bangkok, Thailand
[6] Univ Calif Los Angeles, Div Hematolcol, Dept Med, Los Angeles, CA USA
[7] Jonsson Comprehens Canc Ctr, Los Angeles, CA USA
[8] Parker Inst Canc Immunotherapy, San Francisco, CA USA
[9] Washington Univ, Siteman Canc Ctr, Sch Med, St Louis, MO 63130 USA
[10] Washington Univ, Dept Neurosurg, Sch Med, St Louis, MO 63130 USA
[11] Washington Univ, Dept Genet, Sch Med, St Louis, MO 63130 USA
关键词
BINDING; NEOEPITOPES;
D O I
10.1126/sciimmunol.abg2200
中图分类号
R392 [医学免疫学]; Q939.91 [免疫学];
学科分类号
100102 ;
摘要
Neoantigens are tumor-specific peptide sequences resulting from sources such as somatic DNA mutations. Upon loading onto major histocompatibility complex (MHC) molecules, they can trigger recognition by T cells. Accurate neoantigen identification is thus critical for both designing cancer vaccines and predicting response to immunotherapies. Neoantigen identification and prioritization relies on correctly predicting whether the presenting peptide sequence can successfully induce an immune response. Because most somatic mutations are single-nucleotide variants, changes between wild-type and mutated peptides are typically subtle and require cautious interpretation. A potentially underappreciated variable in neoantigen prediction pipelines is the mutation position within the peptide relative to its anchor positions for the patient's specific MHC molecules. Whereas a subset of peptide positions are presented to the T cell receptor for recognition, others are responsible for anchoring to the MHC, making these positional considerations critical for predicting T cell responses. We computationally predicted anchor positions for different peptide lengths for 328 common HLA alleles and identified unique anchoring patterns among them. Analysis of 923 tumor samples shows that 6 to 38% of neoantigen candidates are potentially misclassified and can be rescued using allele-specific knowledge of anchor positions. A subset of anchor results were orthogonally validated using protein crystallography structures. Representative anchor trends were experimentally validated using peptide-MHC stability assays and competition binding assays. By incorporating our anchor prediction results into neoantigen prediction pipelines, we hope to formalize, streamline, and improve the identification process for relevant clinical studies.
引用
收藏
页数:16
相关论文
共 48 条
  • [1] Comprehensive analysis of structural variants in breast cancer genomes using single-molecule sequencing
    Aganezov, Sergey
    Goodwin, Sara
    Sherman, Rachel M.
    Sedlazeck, Fritz J.
    Arun, Gayatri
    Bhatia, Sonam
    Lee, Isac
    Kirsche, Melanie
    Wappel, Robert
    Kramer, Melissa
    Kostroff, Karen
    Spector, David L.
    Timp, Winston
    McCombie, W. Richard
    Schatz, Michael C.
    [J]. GENOME RESEARCH, 2020, 30 (09) : 1258 - 1273
  • [2] Gapped sequence alignment using artificial neural networks: application to the MHC class I system
    Andreatta, Massimo
    Nielsen, Morten
    [J]. BIOINFORMATICS, 2016, 32 (04) : 511 - 517
  • [3] [Anonymous], 2017, J. Immunol., V199, P3368
  • [4] MuPeXI: prediction of neo-epitopes from tumor sequencing data
    Bjerregaard, Anne-Mette
    Nielsen, Morten
    Hadrup, Sine Reker
    Szallasi, Zoltan
    Eklund, Aron Charles
    [J]. CANCER IMMUNOLOGY IMMUNOTHERAPY, 2017, 66 (09) : 1123 - 1130
  • [5] Development and validation of a fluorescence polarization-based competitive peptide-binding assay for HLA-A*0201 - A new tool for epitope discovery
    Buchli, R
    VanGundy, RS
    Hickman-Miller, HD
    Giberson, CF
    Bardet, W
    Hildebrand, WH
    [J]. BIOCHEMISTRY, 2005, 44 (37) : 12491 - 12507
  • [6] RCSB Protein Data Bank: biological macromolecular structures enabling research and education in fundamental biology, biomedicine, biotechnology and energy
    Burley, Stephen K.
    Berman, Helen M.
    Bhikadiya, Charmi
    Bi, Chunxiao
    Chen, Li
    Di Costanzo, Luigi
    Christie, Cole
    Dalenberg, Ken
    Duarte, Jose M.
    Dutta, Shuchismita
    Feng, Zukang
    Ghosh, Sutapa
    Goodsell, David S.
    Green, Rachel K.
    Guranovic, Vladimir
    Guzenko, Dmytro
    Hudson, Brian P.
    Kalro, Tara
    Liang, Yuhe
    Lowe, Robert
    Namkoong, Harry
    Peisach, Ezra
    Periskova, Irina
    Prlic, Andreas
    Randle, Chris
    Rose, Alexander
    Rose, Peter
    Sala, Raul
    Sekharan, Monica
    Shao, Chenghua
    Tan, Lihua
    Tao, Yi-Ping
    Valasatava, Yana
    Voigt, Maria
    Westbrook, John
    Woo, Jesse
    Yang, Huanwang
    Young, Jasmine
    Zhuravleva, Marina
    Zardecki, Christine
    [J]. NUCLEIC ACIDS RESEARCH, 2019, 47 (D1) : D464 - D474
  • [7] Pan-cancer analysis of whole genomes
    Campbell, Peter J.
    Getz, Gad
    Korbel, Jan O.
    Stuart, Joshua M.
    Jennings, Jennifer L.
    Stein, Lincoln D.
    Perry, Marc D.
    Nahal-Bose, Hardeep K.
    Ouellette, B. F. Francis
    Li, Constance H.
    Rheinbay, Esther
    Nielsen, G. Petur
    Sgroi, Dennis C.
    Wu, Chin-Lee
    Faquin, William C.
    Deshpande, Vikram
    Boutros, Paul C.
    Lazar, Alexander J.
    Hoadley, Katherine A.
    Louis, David N.
    Dursi, L. Jonathan
    Yung, Christina K.
    Bailey, Matthew H.
    Saksena, Gordon
    Raine, Keiran M.
    Buchhalter, Ivo
    Kleinheinz, Kortine
    Schlesner, Matthias
    Zhang, Junjun
    Wang, Wenyi
    Wheeler, David A.
    Ding, Li
    Simpson, Jared T.
    O'Connor, Brian D.
    Yakneen, Sergei
    Ellrott, Kyle
    Miyoshi, Naoki
    Butler, Adam P.
    Royo, Romina
    Shorser, Solomon, I
    Vazquez, Miguel
    Rausch, Tobias
    Tiao, Grace
    Waszak, Sebastian M.
    Rodriguez-Martin, Bernardo
    Shringarpure, Suyash
    Wu, Dai-Ying
    Demidov, German M.
    Delaneau, Olivier
    Hayashi, Shuto
    [J]. NATURE, 2020, 578 (7793) : 82 - +
  • [8] Sources of Cancer Neoantigens beyond Single-Nucleotide Variants
    Capietto, Aude-Helene
    Hoshyar, Reyhane
    Delamarre, Lelia
    [J]. INTERNATIONAL JOURNAL OF MOLECULAR SCIENCES, 2022, 23 (17)
  • [9] Mutation position is an important determinant for predicting cancer neoantigens
    Capietto, Aude-Helene
    Jhunjhunwala, Suchit
    Pollock, Samuel B.
    Lupardus, Patrick
    Wong, Jim
    Hansch, Lena
    Cevallos, James
    Chestnut, Yajun
    Fernandez, Ajay
    Lounsbury, Nicolas
    Nozawa, Tamaki
    Singh, Manmeet
    Fan, Zhiyuan
    de la Cruz, Cecile C.
    Phung, Qui T.
    Taraborrelli, Lucia
    Haley, Benjamin
    Lill, Jennie R.
    Mellman, Ira
    Bourgon, Richard
    Delamarre, Lelia
    [J]. JOURNAL OF EXPERIMENTAL MEDICINE, 2020, 217 (04)
  • [10] Predicting HLA class II antigen presentation through integrated deep learning
    Chen, Binbin
    Khodadoust, Michael S.
    Olsson, Niclas
    Wagar, Lisa E.
    Fast, Ethan
    Liu, Chih Long
    Muftuoglu, Yagmur
    Sworder, Brian J.
    Diehn, Maximilian
    Levy, Ronald
    Davis, Mark M.
    Elias, Joshua E.
    Altman, Russ B.
    Alizadeh, Ash A.
    [J]. NATURE BIOTECHNOLOGY, 2019, 37 (11) : 1332 - +