Development and Validation of Risk Prediction Models for Colorectal Cancer in Patients with Symptoms

被引:2
作者
Xu, Wei [1 ]
Mesa-Eguiagaray, Ines [1 ]
Kirkpatrick, Theresa [1 ]
Devlin, Jennifer [2 ,3 ]
Brogan, Stephanie [4 ]
Turner, Patricia [4 ]
Macdonald, Chloe [5 ,6 ]
Thornton, Michelle [7 ]
Zhang, Xiaomeng [1 ]
He, Yazhou [1 ]
Li, Xue [1 ]
Timofeeva, Maria [2 ,3 ,8 ]
Farrington, Susan [2 ,3 ]
Din, Farhat [2 ,3 ]
Dunlop, Malcolm [2 ,3 ]
Theodoratou, Evropi [1 ,3 ]
机构
[1] Univ Edinburgh, Usher Inst, Ctr Global Hlth, Edinburgh EH8 9AG, Scotland
[2] Univ Edinburgh, Inst Genet & Canc, Med Res Council Human Genet Unit, Colon Canc Genet Grp,MRC, Edinburgh EH4 2XU, Scotland
[3] Univ Edinburgh, Inst Genet & Canc, Edinburgh Canc Res Ctr, Edinburgh EH4 2XU, Scotland
[4] Forth Valley Royal Hosp, Oncol Dept, Clin Res Team, Stirling Rd, Larbert FK5 4WR, Scotland
[5] Univ Hosp Wishaw, Airdrie ML6 0JS, Scotland
[6] Univ Hosp Monklands, NHS Lanarkshire, Airdrie ML6 0JS, Scotland
[7] Wishaw Gen Hosp, Wishaw ML2 0DP, Scotland
[8] Univ Southern Denmark, Danish Inst Adv Study, Inst Publ Hlth, Res Unit Epidemiol Biostat & Biodemog, DK-5230 Odense M, Denmark
基金
英国医学研究理事会;
关键词
colorectal cancer; symptoms; prediction model; polygenic risk score; SIMULATED CONSULTATIONS; CLINICAL-FEATURES; SCORING SYSTEM; DIAGNOSIS; PROGNOSIS; TOOL;
D O I
10.3390/jpm13071065
中图分类号
R19 [保健组织与事业(卫生事业管理)];
学科分类号
摘要
We aimed to develop and validate prediction models incorporating demographics, clinical features, and a weighted genetic risk score (wGRS) for individual prediction of colorectal cancer (CRC) risk in patients with gastroenterological symptoms. Prediction models were developed with internal validation [CRC Cases: n = 1686/Controls: n = 963]. Candidate predictors included age, sex, BMI, wGRS, family history, and symptoms (changes in bowel habits, rectal bleeding, weight loss, anaemia, abdominal pain). The baseline model included all the non-genetic predictors. Models A (baseline model + wGRS) and B (baseline model) were developed based on LASSO regression to select predictors. Models C (baseline model + wGRS) and D (baseline model) were built using all variables. Models' calibration and discrimination were evaluated through the Hosmer-Lemeshow test (calibration curves were plotted) and C-statistics (corrected based on 1000 bootstrapping). The models' prediction performance was: model A (corrected C-statistic = 0.765); model B (corrected C-statistic = 0.753); model C (corrected C-statistic = 0.764); and model D (corrected C-statistic = 0.752). Models A and C, that integrated wGRS with demographic and clinical predictors, had a statistically significant improved prediction performance. Our findings suggest that future application of genetic predictors holds significant promise, which could enhance CRC risk prediction. Therefore, further investigation through model external validation and clinical impact is merited.
引用
收藏
页数:16
相关论文
共 58 条
[1]   Who needs colonoscopy to identify colorectal cancer? Bowel symptoms do not add substantially to age and other medical history [J].
Adelstein, B. -A. ;
Irwig, L. ;
Macaskill, P. ;
Turner, R. M. ;
Chan, S. F. ;
Katelaris, P. H. .
ALIMENTARY PHARMACOLOGY & THERAPEUTICS, 2010, 32 (02) :270-281
[2]   The value of age and medical history for predicting colorectal cancer and adenomas in people referred for colonoscopy [J].
Adelstein, Barbara-Ann ;
Macaskill, Petra ;
Turner, Robin M. ;
Katelaris, Peter H. ;
Irwig, Les .
BMC GASTROENTEROLOGY, 2011, 11
[3]   Most bowel cancer symptoms do not indicate colorectal cancer and polyps: a systematic review [J].
Adelstein, Barbara-Ann ;
Macaskill, Petra ;
Chan, Siew F. ;
Katelaris, Peter H. ;
Irwig, Les .
BMC GASTROENTEROLOGY, 2011, 11
[4]   A symptom-based model to predict colorectal cancer in low-resource countries: Results from a prospective study of patients at high risk for colorectal cancer [J].
Alatise, Olusegun Isaac ;
Ayandipo, Omobolaji O. ;
Adeyeye, Ademola ;
Seier, Ken ;
Komolafe, Akinwunmi O. ;
Bojuwoye, Matthew O. ;
Afuwape, Oludapo O. ;
Zauber, Ann ;
Omisore, Adeleye ;
Olatoke, Samuel ;
Akere, Adegboyega ;
Famurewa, Olusola ;
Gonen, Mithat ;
Irabor, David O. ;
Kingham, T. Peter .
CANCER, 2018, 124 (13) :2766-2773
[5]   Data quality control in genetic case-control association studies [J].
Anderson, Carl A. ;
Pettersson, Fredrik H. ;
Clarke, Geraldine M. ;
Cardon, Lon R. ;
Morris, Andrew P. ;
Zondervan, Krina T. .
NATURE PROTOCOLS, 2010, 5 (09) :1564-1573
[6]  
Assel Melissa, 2017, Diagn Progn Res, V1, P19, DOI [10.1186/s41512-017-0020-3, 10.1186/s41512-017-0020-3]
[7]   Diagnostic value of self-reported symptoms in Danish outpatients referred with symptoms consistent with colorectal cancer [J].
Bjerregaard, N. C. ;
Tottrup, A. ;
Sorensen, H. T. ;
Laurberg, S. .
COLORECTAL DISEASE, 2007, 9 (05) :443-451
[8]   Vitamin D Intake and the Risk of Colorectal Cancer: An Updated Meta-Analysis and Systematic Review of Case-Control and Prospective Cohort Studies [J].
Boughanem, Hatim ;
Canudas, Silvia ;
Hernandez-Alonso, Pablo ;
Becerra-Tomas, Nerea ;
Babio, Nancy ;
Salas-Salvado, Jordi ;
Macias-Gonzalez, Manuel .
CANCERS, 2021, 13 (11)
[9]  
Breiman L., 1984, Classi cation and Regression Trees
[10]   The relative performance of AIC, AICC and BIC in the presence of unobserved heterogeneity [J].
Brewer, Mark J. ;
Butler, Adam ;
Cooksley, Susan L. .
METHODS IN ECOLOGY AND EVOLUTION, 2016, 7 (06) :679-692