Aptamer-Based Cell-Surface Profiling with Single-Cell Resolution Enables Precise Cancer Characterization

被引:6
|
作者
Xu, Liujun [1 ]
Feng, Yawei [1 ,2 ]
Wang, Tong [1 ]
Li, Shenhuan [1 ]
Xu, Kangli [3 ]
Sun, Yue [1 ,5 ]
Luo, Yi [4 ,5 ]
Ye, Yishan [4 ]
Miao, Yan [6 ]
Dong, Yun [6 ]
Guo, Zhenzhen [1 ]
Zhang, Qing [3 ]
Li, Benshang [6 ]
Huang, He [4 ,5 ]
Wang, Xue-Qiang [1 ]
Qiu, Liping [1 ]
Tan, Weihong [1 ,2 ,3 ]
机构
[1] Hunan Univ, Coll Chem & Chem Engn, Coll Biol, Aptamer Engn Ctr Hunan Prov,Mol Sci & Biomed Lab,S, Changsha 410082, Hunan, Peoples R China
[2] Chinese Acad Sci, Zhejiang Canc Hosp, Hangzhou Inst Med, Key Lab Zhejiang Prov Aptamers & Theranost, Hangzhou 310022, Zhejiang, Peoples R China
[3] Shanghai Jiao Tong Univ, Sch Med, Renji Hosp, Inst Mol Med,Coll Chem & Chem Engn, Shanghai 200240, Peoples R China
[4] Zhejiang Univ, Affiliated Hosp 1, Bone Marrow Transplanta t Ctr, Sch Med, Hangzhou 310003, Peoples R China
[5] Zhejiang Univ, Inst Hematol, Hangzhou 310003, Peoples R China
[6] Shanghai Jiao Tong Univ, Sch Med, Shanghai Childrens Med Ctr, Dept Hematol & Oncol, Shanghai 200127, Peoples R China
来源
CCS CHEMISTRY | 2024年 / 6卷 / 01期
基金
中国国家自然科学基金;
关键词
molecular profiling; cancer diagnosis; mass cytometry; aptamers; machine learning; WORLD-HEALTH-ORGANIZATION; MOLECULAR RECOGNITION; MYELOID NEOPLASMS; ARSENIC TRIOXIDE; MASS CYTOMETRY; RETINOIC ACID; MESSENGER-RNA; CLASSIFICATION; DIAGNOSIS; SELECTION;
D O I
10.31635/ccschem.023.202302825
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Molecular profiling of cell-surface proteins is a powerful strategy for precise cancer diagnosis. While mass cytometry (MC) enables synchronous detection of over 40 cellular parameters, its full potential in disease classification is challenged by the limited types of recognition probes currently available. In this work, we synthesize a panel of heavy isotope conjugated aptamers to profile cancer-associated signatures on the surface of hematological malignancy (HM) cells. Based on 15 molecular signatures, we performed cell-surface profiling that allowed the precise classification of 8 HM cell lines. Combined with machine-learning technology, this aptamer-based MC platform also achieved multiclass identification of HM subtypes in clinical samples with 100% accuracy in the training cohort and 80% accuracy in the test cohort. Therefore, we report an effective and practical strategy for precise cancer classification at the single cell level, paving the way for its clinical use in the near future.
引用
收藏
页码:196 / 207
页数:12
相关论文
共 50 条
  • [41] Droplet Microfluidics Enables Tracing of Target Cells at the Single-Cell Transcriptome Resolution
    Liu, Yang
    Wang, Shiyu
    Lyu, Menghua
    Xie, Run
    Guo, Weijin
    He, Ying
    Shi, Xuyang
    Wang, Yang
    Qi, Jingyu
    Zhu, Qianqian
    Zhang, Hui
    Luo, Tao
    Chen, Huaying
    Zhu, Yonggang
    Dong, Xuan
    Li, Zida
    Gu, Ying
    Liu, Longqi
    Xu, Xun
    Liu, Ya
    BIOENGINEERING-BASEL, 2022, 9 (11):
  • [42] Microfluidic Device for Aptamer-Based Cancer Cell Capture and Genetic Mutation Detection
    Reinholt, Sarah J.
    Craighead, Harold G.
    ANALYTICAL CHEMISTRY, 2018, 90 (04) : 2601 - 2608
  • [43] High-throughput chromatin accessibility profiling at single-cell resolution
    Anja Mezger
    Sandy Klemm
    Ishminder Mann
    Kara Brower
    Alain Mir
    Magnolia Bostick
    Andrew Farmer
    Polly Fordyce
    Sten Linnarsson
    William Greenleaf
    Nature Communications, 9
  • [44] Multi-omics profiling of mouse gastrulation at single-cell resolution
    Ricard Argelaguet
    Stephen J. Clark
    Hisham Mohammed
    L. Carine Stapel
    Christel Krueger
    Chantriolnt-Andreas Kapourani
    Ivan Imaz-Rosshandler
    Tim Lohoff
    Yunlong Xiang
    Courtney W. Hanna
    Sebastien Smallwood
    Ximena Ibarra-Soria
    Florian Buettner
    Guido Sanguinetti
    Wei Xie
    Felix Krueger
    Berthold Göttgens
    Peter J. Rugg-Gunn
    Gavin Kelsey
    Wendy Dean
    Jennifer Nichols
    Oliver Stegle
    John C. Marioni
    Wolf Reik
    Nature, 2019, 576 : 487 - 491
  • [45] Transcriptomic Profiling of the Developing Cardiac Conduction System at Single-Cell Resolution
    Goodyer, William R.
    Beyersdorf, Benjamin M.
    Paik, David T.
    Tian, Lei
    Li, Guang
    Buikema, Jan W.
    Chirikian, Orlando
    Choi, Shannon
    Venkatraman, Sneha
    Adams, Eliza L.
    Tessier-Lavigne, Marc
    Wu, Joseph C.
    Wu, Sean M.
    CIRCULATION RESEARCH, 2019, 125 (04) : 379 - 397
  • [46] Multi-omics profiling of mouse gastrulation at single-cell resolution
    Argelaguet, Ricard
    Clark, Stephen J.
    Mohammed, Hisham
    Stapel, L. Carine
    Krueger, Christel
    Kapourani, Chantriolnt-Andreas
    Imaz-Rosshandler, Ivan
    Lohoff, Tim
    Xiang, Yunlong
    Hanna, Courtney W.
    Smallwood, Sebastien
    Ibarra-Soria, Ximena
    Buettner, Florian
    Sanguinetti, Guido
    Xie, Wei
    Krueger, Felix
    Gottgens, Berthold
    Rugg-Gunn, Peter J.
    Kelsey, Gavin
    Dean, Wendy
    Nichols, Jennifer
    Stegle, Oliver
    Marioni, John C.
    Reik, Wolf
    NATURE, 2019, 576 (7787) : 487 - +
  • [47] High-throughput chromatin accessibility profiling at single-cell resolution
    Mezger, Anja
    Klemm, Sandy
    Mann, Ishminder
    Brower, Kara
    Mir, Alain
    Bostick, Magnolia
    Farmer, Andrew
    Fordyce, Polly
    Linnarsson, Sten
    Greenleaf, William
    NATURE COMMUNICATIONS, 2018, 9
  • [48] Proteomics mining of cancer hallmarks on a single-cell resolution
    Li, Maomao
    Zuo, Jing
    Yang, Kailin
    Wang, Ping
    Zhou, Shengtao
    MASS SPECTROMETRY REVIEWS, 2024, 43 (05) : 1019 - 1040
  • [49] Understanding endometrial cancer heterogeneity at single-cell resolution
    Villarreal, Enrique I. Velazquez
    Carpten, John D.
    Craig, David W.
    CANCER RESEARCH, 2020, 80 (16)
  • [50] Single-Cell Spatial Resolution Transcriptomic Profiling in Lupus Membranous Nephritis
    Avillach, Claire
    Giarraputo, Alessia
    Rosales, Ivy A.
    Marcin, Jeremy M.
    Brousaides, Nicole Lauren
    Colvin, Robert B.
    JOURNAL OF THE AMERICAN SOCIETY OF NEPHROLOGY, 2024, 35 (10):