Aptamer-Based Cell-Surface Profiling with Single-Cell Resolution Enables Precise Cancer Characterization

被引:6
|
作者
Xu, Liujun [1 ]
Feng, Yawei [1 ,2 ]
Wang, Tong [1 ]
Li, Shenhuan [1 ]
Xu, Kangli [3 ]
Sun, Yue [1 ,5 ]
Luo, Yi [4 ,5 ]
Ye, Yishan [4 ]
Miao, Yan [6 ]
Dong, Yun [6 ]
Guo, Zhenzhen [1 ]
Zhang, Qing [3 ]
Li, Benshang [6 ]
Huang, He [4 ,5 ]
Wang, Xue-Qiang [1 ]
Qiu, Liping [1 ]
Tan, Weihong [1 ,2 ,3 ]
机构
[1] Hunan Univ, Coll Chem & Chem Engn, Coll Biol, Aptamer Engn Ctr Hunan Prov,Mol Sci & Biomed Lab,S, Changsha 410082, Hunan, Peoples R China
[2] Chinese Acad Sci, Zhejiang Canc Hosp, Hangzhou Inst Med, Key Lab Zhejiang Prov Aptamers & Theranost, Hangzhou 310022, Zhejiang, Peoples R China
[3] Shanghai Jiao Tong Univ, Sch Med, Renji Hosp, Inst Mol Med,Coll Chem & Chem Engn, Shanghai 200240, Peoples R China
[4] Zhejiang Univ, Affiliated Hosp 1, Bone Marrow Transplanta t Ctr, Sch Med, Hangzhou 310003, Peoples R China
[5] Zhejiang Univ, Inst Hematol, Hangzhou 310003, Peoples R China
[6] Shanghai Jiao Tong Univ, Sch Med, Shanghai Childrens Med Ctr, Dept Hematol & Oncol, Shanghai 200127, Peoples R China
来源
CCS CHEMISTRY | 2024年 / 6卷 / 01期
基金
中国国家自然科学基金;
关键词
molecular profiling; cancer diagnosis; mass cytometry; aptamers; machine learning; WORLD-HEALTH-ORGANIZATION; MOLECULAR RECOGNITION; MYELOID NEOPLASMS; ARSENIC TRIOXIDE; MASS CYTOMETRY; RETINOIC ACID; MESSENGER-RNA; CLASSIFICATION; DIAGNOSIS; SELECTION;
D O I
10.31635/ccschem.023.202302825
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Molecular profiling of cell-surface proteins is a powerful strategy for precise cancer diagnosis. While mass cytometry (MC) enables synchronous detection of over 40 cellular parameters, its full potential in disease classification is challenged by the limited types of recognition probes currently available. In this work, we synthesize a panel of heavy isotope conjugated aptamers to profile cancer-associated signatures on the surface of hematological malignancy (HM) cells. Based on 15 molecular signatures, we performed cell-surface profiling that allowed the precise classification of 8 HM cell lines. Combined with machine-learning technology, this aptamer-based MC platform also achieved multiclass identification of HM subtypes in clinical samples with 100% accuracy in the training cohort and 80% accuracy in the test cohort. Therefore, we report an effective and practical strategy for precise cancer classification at the single cell level, paving the way for its clinical use in the near future.
引用
收藏
页码:196 / 207
页数:12
相关论文
共 50 条
  • [21] Quantitative profiling of regulatory DNA activity at single-cell resolution
    Lalanne, Jean-Benoit
    Shendure, Jay
    NATURE METHODS, 2024, 21 (06) : 936 - 937
  • [22] Spatial Transcriptome Profiling In The Mouse Heart With Single-Cell Resolution
    Liu, Yuening
    Coles, Annabelle
    Neininger-Castro, Abigail
    Rune, Julia
    Lee, Richard T.
    Kosuri, Pallav
    CIRCULATION RESEARCH, 2023, 133
  • [23] Epigenomic profiling of mouse nucleus accumbens at single-cell resolution
    Bhatia, Parth
    Yang, Lite
    Luo, Jay X. J.
    Xu, Mengyi
    Renthal, William
    MOLECULAR AND CELLULAR NEUROSCIENCE, 2023, 126
  • [24] Profiling joint tissues at single-cell resolution: advances and insights
    Akshay Pandey
    Nidhi Bhutani
    Nature Reviews Rheumatology, 2024, 20 (1) : 7 - 20
  • [25] Precise Measurement of Transduction Efficiency at Single-Cell Resolution for Cell and Gene Therapy Development
    Patel, Khushali
    Thompson, Kathryn
    Marin, Jacqueline
    Yang, Yilong
    Wang, Shu
    Enzmann, Brittany L.
    Mendoza, Daniel
    MOLECULAR THERAPY, 2022, 30 (04) : 198 - 199
  • [26] Profiling joint tissues at single-cell resolution: advances and insights
    Pandey, Akshay
    Bhutani, Nidhi
    NATURE REVIEWS RHEUMATOLOGY, 2024, 20 (01) : 7 - 20
  • [27] Single-cell resolution characterization of myeloid-derived cell states with implication in cancer outcome
    Guimaraes, Gabriela Rapozo
    Maklouf, Giovanna Resk
    Teixeira, Cristiane Esteves
    Santos, Leandro de Oliveira
    Tessarollo, Nayara Gusmao
    de Toledo, Nayara Evelin
    Serain, Alessandra Freitas
    de Lanna, Cristovao Antunes
    Pretti, Marco Antonio
    da Cruz, Jessica Goncalves Vieira
    Falchetti, Marcelo
    Dimas, Mylla M.
    Filgueiras, Igor Salerno
    Cabral-Marques, Otavio
    Ramos, Rodrigo Nalio
    de Macedo, Fabiane Carvalho
    Rodrigues, Fabiana Resende
    Bastos, Nina Carrossini
    da Silva, Jesse Lopes
    da Rocha, Edroaldo Lummertz
    Chaves, Claudia Bessa Pereira
    de Melo, Andreia Cristina
    Moraes-Vieira, Pedro M. M.
    Mori, Marcelo A.
    Boroni, Mariana
    NATURE COMMUNICATIONS, 2024, 15 (01)
  • [28] APTAMER-BASED LAB-ON-CHIP FOR CANCER CELL ISOLATION AND DETECTION
    Wan, Yuan
    Kim, Young-tae
    Li, Na
    Ellington, Andrew D.
    Iqbal, Samir M.
    NEMB2010: PROCEEDINGS OF THE ASME FIRST GLOBAL CONGRESS ON NANOENGINEERING FOR MEDICINE AND BIOLOGY - 2010, 2010, : 35 - 36
  • [29] Single-cell mutational profiling and clonal phylogeny in cancer
    Potter, Nicola E.
    Ermini, Luca
    Papaemmanuil, Elli
    Cazzaniga, Giovanni
    Vijayaraghavan, Gowri
    Titley, Ian
    Ford, Anthony
    Campbell, Peter
    Kearney, Lyndal
    Greaves, Mel
    GENOME RESEARCH, 2013, 23 (12) : 2115 - 2125
  • [30] Classification of Estrogen Receptor-Positive Breast Cancer Based on Immunogenomic Profiling and Validation at Single-Cell Resolution
    Ma, Xianxiong
    Chen, Hengyu
    Yang, Ming
    Ke, Zunxiang
    Wang, Mengyi
    Huang, Tao
    Li, Lei
    FRONTIERS IN CELL AND DEVELOPMENTAL BIOLOGY, 2021, 9