Aptamer-Based Cell-Surface Profiling with Single-Cell Resolution Enables Precise Cancer Characterization

被引:6
|
作者
Xu, Liujun [1 ]
Feng, Yawei [1 ,2 ]
Wang, Tong [1 ]
Li, Shenhuan [1 ]
Xu, Kangli [3 ]
Sun, Yue [1 ,5 ]
Luo, Yi [4 ,5 ]
Ye, Yishan [4 ]
Miao, Yan [6 ]
Dong, Yun [6 ]
Guo, Zhenzhen [1 ]
Zhang, Qing [3 ]
Li, Benshang [6 ]
Huang, He [4 ,5 ]
Wang, Xue-Qiang [1 ]
Qiu, Liping [1 ]
Tan, Weihong [1 ,2 ,3 ]
机构
[1] Hunan Univ, Coll Chem & Chem Engn, Coll Biol, Aptamer Engn Ctr Hunan Prov,Mol Sci & Biomed Lab,S, Changsha 410082, Hunan, Peoples R China
[2] Chinese Acad Sci, Zhejiang Canc Hosp, Hangzhou Inst Med, Key Lab Zhejiang Prov Aptamers & Theranost, Hangzhou 310022, Zhejiang, Peoples R China
[3] Shanghai Jiao Tong Univ, Sch Med, Renji Hosp, Inst Mol Med,Coll Chem & Chem Engn, Shanghai 200240, Peoples R China
[4] Zhejiang Univ, Affiliated Hosp 1, Bone Marrow Transplanta t Ctr, Sch Med, Hangzhou 310003, Peoples R China
[5] Zhejiang Univ, Inst Hematol, Hangzhou 310003, Peoples R China
[6] Shanghai Jiao Tong Univ, Sch Med, Shanghai Childrens Med Ctr, Dept Hematol & Oncol, Shanghai 200127, Peoples R China
来源
CCS CHEMISTRY | 2024年 / 6卷 / 01期
基金
中国国家自然科学基金;
关键词
molecular profiling; cancer diagnosis; mass cytometry; aptamers; machine learning; WORLD-HEALTH-ORGANIZATION; MOLECULAR RECOGNITION; MYELOID NEOPLASMS; ARSENIC TRIOXIDE; MASS CYTOMETRY; RETINOIC ACID; MESSENGER-RNA; CLASSIFICATION; DIAGNOSIS; SELECTION;
D O I
10.31635/ccschem.023.202302825
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Molecular profiling of cell-surface proteins is a powerful strategy for precise cancer diagnosis. While mass cytometry (MC) enables synchronous detection of over 40 cellular parameters, its full potential in disease classification is challenged by the limited types of recognition probes currently available. In this work, we synthesize a panel of heavy isotope conjugated aptamers to profile cancer-associated signatures on the surface of hematological malignancy (HM) cells. Based on 15 molecular signatures, we performed cell-surface profiling that allowed the precise classification of 8 HM cell lines. Combined with machine-learning technology, this aptamer-based MC platform also achieved multiclass identification of HM subtypes in clinical samples with 100% accuracy in the training cohort and 80% accuracy in the test cohort. Therefore, we report an effective and practical strategy for precise cancer classification at the single cell level, paving the way for its clinical use in the near future.
引用
收藏
页码:196 / 207
页数:12
相关论文
共 50 条
  • [1] Aptamer-Based Cancer Cell Analysis and Treatment
    Wu, Limei
    Zhang, Yutong
    Wang, Zhimin
    Zhang, Yue
    Zou, Jianmei
    Qiu, Liping
    CHEMISTRYOPEN, 2022, 11 (10)
  • [2] Profiling Cell Signaling Networks at Single-cell Resolution
    Lun, Xiao-Kang
    Bodenmiller, Bernd
    MOLECULAR & CELLULAR PROTEOMICS, 2020, 19 (05) : 744 - 756
  • [3] Nanobody-tethered transposition enables multifactorial chromatin profiling at single-cell resolution
    Tim Stuart
    Stephanie Hao
    Bingjie Zhang
    Levan Mekerishvili
    Dan A. Landau
    Silas Maniatis
    Rahul Satija
    Ivan Raimondi
    Nature Biotechnology, 2023, 41 : 806 - 812
  • [4] Nanobody-tethered transposition enables multifactorial chromatin profiling at single-cell resolution
    Stuart, Tim
    Hao, Stephanie
    Zhang, Bingjie
    Mekerishvili, Levan
    Landau, Dan A.
    Maniatis, Silas
    Satija, Rahul
    Raimondi, Ivan
    NATURE BIOTECHNOLOGY, 2023, 41 (06) : 806 - +
  • [5] Comprehensive characterization of gastric cancer at single-cell resolution
    Chen, Jiamin
    Sathe, Anuja
    Grimes, Sue
    Greer, Stephanie
    Lau, Billy
    Renschler, Ann
    Poultsides, George
    Suarez, Carlos
    Ji, Hanlee
    CANCER RESEARCH, 2019, 79 (13)
  • [6] Profiling Chromatin Accessibility at Single-cell Resolution
    Sinha, Sarthak
    Satpathy, Ansuman T.
    Zhou, Weiqiang
    Ji, Hongkai
    Stratton, Jo A.
    Jaffer, Arzina
    Bahlis, Nizar
    Morrissy, Sorana
    Biernaskie, Jeff A.
    GENOMICS PROTEOMICS & BIOINFORMATICS, 2021, 19 (02) : 172 - 190
  • [7] Profiling Chromatin Accessibility at Single-cell Resolution
    Sarthak Sinha
    Ansuman TSatpathy
    Weiqiang Zhou
    Hongkai Ji
    Jo AStratton
    Arzina Jaffer
    Nizar Bahlis
    Sorana Morrissy
    Jeff ABiernaskie
    Genomics,Proteomics & Bioinformatics, 2021, (02) : 172 - 190
  • [8] Profiling Chromatin Accessibility at Single-cell Resolution
    Sarthak Sinha
    Ansuman T.Satpathy
    Weiqiang Zhou
    Hongkai Ji
    Jo A.Stratton
    Arzina Jaffer
    Nizar Bahlis
    Sorana Morrissy
    Jeff A.Biernaskie
    Genomics,Proteomics & Bioinformatics, 2021, 19 (02) : 172 - 190
  • [9] Whole-Body Profiling of Cancer Metastasis with Single-Cell Resolution
    Kubota, Shimpei I.
    Takahashi, Kei
    Nishida, Jun
    Morishita, Yasuyuki
    Ehata, Shogo
    Tainaka, Kazuki
    Miyazono, Kohei
    Ueda, Hiroki R.
    CELL REPORTS, 2017, 20 (01): : 236 - 250
  • [10] Single-Cell Tumbling Enables High-Resolution Size Profiling of Retinal Stem Cells
    Gomis, Surath
    Labib, Mahmoud
    Coles, Brenda L. K.
    van der Kooy, Derek
    Sargent, Edward H.
    Kelley, Shana O.
    ACS APPLIED MATERIALS & INTERFACES, 2018, 10 (41) : 34811 - 34816