Phase-matching quantum key distribution with imperfect sources

被引:2
|
作者
Zhang, Xiao-Xu [1 ,2 ,3 ]
Lu, Yi-Fei [1 ,2 ]
Wang, Yang [1 ,2 ]
Jiang, Mu-Sheng [1 ,2 ]
Li, Hong-Wei [1 ,2 ]
Zhou, Chun [1 ,2 ]
Zhou, Yu [1 ,2 ]
Bao, Wan-Su [1 ,2 ]
机构
[1] SSF IEU, Henan Key Lab Quantum Informat & Cryptog, Zhengzhou 450001, Peoples R China
[2] Univ Sci & Technol China, Synerget Innovat Ctr Quantum Informat & Quantum Ph, Hefei 230026, Peoples R China
[3] SSF IEU, Basic Dept, Zhengzhou 450001, Peoples R China
基金
中国博士后科学基金; 中国国家自然科学基金;
关键词
quantum key distribution; reference technique; imperfect sources; phase-matching; SECURITY;
D O I
10.1088/1674-1056/ac9b03
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
The huge discrepancies between actual devices and theoretical assumptions severely threaten the security of quantum key distribution. Recently, a general new framework called the reference technique has attracted wide attention in defending against the imperfect sources of quantum key distribution. Here, the state preparation flaws, the side channels of mode dependencies, the Trojan horse attacks, and the pulse classical correlations are studied by using the reference technique on the phase-matching protocol. Our simulation results highlight the importance of the actual secure parameters choice for transmitters, which is necessary to achieve secure communication. Increasing the single actual secure parameter will reduce the secure key rate. However, as long as the parameters are set properly, the secure key rate is still high. Considering the influences of multiple actual secure parameters will significantly reduce the secure key rate. These actual secure parameters must be considered when scientists calibrate transmitters. This work is an important step towards the practical and secure implementation of phase-matching protocol. In the future, it is essential to study the main parameters, find out their maximum and general values, classify the multiple parameters as the same parameter, and give countermeasures.
引用
收藏
页数:9
相关论文
共 50 条
  • [31] Extended single-photon entanglement-based phase-matching quantum key distribution
    Wei Li
    Le Wang
    Shengmei Zhao
    Quantum Information Processing, 21
  • [32] Tripartite Quantum Key Distribution Implemented with Imperfect Sources
    Sekga, Comfort
    Mafu, Mhlambululi
    OPTICS, 2022, 3 (03): : 191 - 208
  • [33] Phase-Matching Continuous-Variable Measurement-Device-Independent Quantum Key Distribution
    Huang, Peng
    Wang, Tao
    Huang, Duan
    Zeng, Guihua
    SYMMETRY-BASEL, 2022, 14 (03):
  • [34] Extended single-photon entanglement-based phase-matching quantum key distribution
    Li, Wei
    Wang, Le
    Zhao, Shengmei
    QUANTUM INFORMATION PROCESSING, 2022, 21 (04)
  • [35] Improved statistical fluctuation analysis for two decoy-states phase-matching quantum key distribution
    周江平
    周媛媛
    周学军
    暴轩
    Chinese Physics B, 2023, 32 (08) : 225 - 231
  • [36] Improved statistical fluctuation analysis for two decoy-states phase-matching quantum key distribution
    Zhou, Jiang-Ping
    Zhou, Yuan-Yuan
    Zhou, Xue-Jun
    Bao, Xuan
    CHINESE PHYSICS B, 2023, 32 (08)
  • [37] Security of quantum key distribution with imperfect phase randomisation
    Curras-Lorenzo, Guillermo
    Nahar, Shlok
    Lutkenhaus, Norbert
    Tamaki, Kiyoshi
    Curty, Marcos
    QUANTUM SCIENCE AND TECHNOLOGY, 2024, 9 (01)
  • [38] Phase-Matching Quantum Cryptographic Conferencing
    Zhao, Shuai
    Zeng, Pei
    Cao, Wen-Fei
    Xu, Xin-Yu
    Zhen, Yi-Zheng
    Ma, Xiongfeng
    Li, Li
    Liu, Nai-Le
    Chen, Kai
    PHYSICAL REVIEW APPLIED, 2020, 14 (02):
  • [39] Engineered Phase-Matching for Quantum Photonics
    Ben Dixon, P.
    Shapiro, Jeffrey H.
    Wong, Franco N. C.
    2013 CONFERENCE ON LASERS AND ELECTRO-OPTICS (CLEO), 2013,
  • [40] Finite-key security analysis of quantum key distribution with imperfect light sources
    Mizutani, Akihiro
    Curty, Marcos
    Lim, Charles Ci Wen
    Imoto, Nobuyuki
    Tamaki, Kiyoshi
    NEW JOURNAL OF PHYSICS, 2015, 17