Phase-matching quantum key distribution with imperfect sources

被引:2
作者
Zhang, Xiao-Xu [1 ,2 ,3 ]
Lu, Yi-Fei [1 ,2 ]
Wang, Yang [1 ,2 ]
Jiang, Mu-Sheng [1 ,2 ]
Li, Hong-Wei [1 ,2 ]
Zhou, Chun [1 ,2 ]
Zhou, Yu [1 ,2 ]
Bao, Wan-Su [1 ,2 ]
机构
[1] SSF IEU, Henan Key Lab Quantum Informat & Cryptog, Zhengzhou 450001, Peoples R China
[2] Univ Sci & Technol China, Synerget Innovat Ctr Quantum Informat & Quantum Ph, Hefei 230026, Peoples R China
[3] SSF IEU, Basic Dept, Zhengzhou 450001, Peoples R China
基金
中国国家自然科学基金; 中国博士后科学基金;
关键词
quantum key distribution; reference technique; imperfect sources; phase-matching; SECURITY;
D O I
10.1088/1674-1056/ac9b03
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
The huge discrepancies between actual devices and theoretical assumptions severely threaten the security of quantum key distribution. Recently, a general new framework called the reference technique has attracted wide attention in defending against the imperfect sources of quantum key distribution. Here, the state preparation flaws, the side channels of mode dependencies, the Trojan horse attacks, and the pulse classical correlations are studied by using the reference technique on the phase-matching protocol. Our simulation results highlight the importance of the actual secure parameters choice for transmitters, which is necessary to achieve secure communication. Increasing the single actual secure parameter will reduce the secure key rate. However, as long as the parameters are set properly, the secure key rate is still high. Considering the influences of multiple actual secure parameters will significantly reduce the secure key rate. These actual secure parameters must be considered when scientists calibrate transmitters. This work is an important step towards the practical and secure implementation of phase-matching protocol. In the future, it is essential to study the main parameters, find out their maximum and general values, classify the multiple parameters as the same parameter, and give countermeasures.
引用
收藏
页数:9
相关论文
共 60 条
[1]   Device-independent security of quantum cryptography against collective attacks [J].
Acin, Antonio ;
Brunner, Nicolas ;
Gisin, Nicolas ;
Massar, Serge ;
Pironio, Stefano ;
Scarani, Valerio .
PHYSICAL REVIEW LETTERS, 2007, 98 (23)
[2]   Discrete-phase-randomized coherent state source and its application in quantum key distribution [J].
Cao, Zhu ;
Zhang, Zhen ;
Lo, Hoi-Kwong ;
Ma, Xiongfeng .
NEW JOURNAL OF PHYSICS, 2015, 17
[3]   Twin-field quantum key distribution over a 511km optical fibre linking two distant metropolitan areas [J].
Chen, Jiu-Peng ;
Zhang, Chi ;
Liu, Yang ;
Jiang, Cong ;
Zhang, Wei-Jun ;
Han, Zhi-Yong ;
Ma, Shi-Zhao ;
Hu, Xiao-Long ;
Li, Yu-Huai ;
Liu, Hui ;
Zhou, Fei ;
Jiang, Hai-Feng ;
Chen, Teng-Yun ;
Li, Hao ;
You, Li-Xing ;
Wang, Zhen ;
Wang, Xiang-Bin ;
Zhang, Qiang ;
Pan, Jian-Wei .
NATURE PHOTONICS, 2021, 15 (08) :570-575
[4]   Sending-or-Not-Sending with Independent Lasers: Secure Twin-Field Quantum Key Distribution over 509 km [J].
Chen, Jiu-Peng ;
Zhang, Chi ;
Liu, Yang ;
Jiang, Cong ;
Zhang, Weijun ;
Hu, Xiao-Long ;
Guan, Jian-Yu ;
Yu, Zong-Wen ;
Xu, Hai ;
Lin, Jin ;
Li, Ming-Jun ;
Chen, Hao ;
Li, Hao ;
You, Lixing ;
Wang, Zhen ;
Wang, Xiang-Bin ;
Zhang, Qiang ;
Pan, Jian-Wei .
PHYSICAL REVIEW LETTERS, 2020, 124 (07)
[5]   Twin-Field Quantum Key Distribution without Phase Postselection [J].
Cui, Chaohan ;
Yin, Zhen-Qiang ;
Wang, Rong ;
Chen, Wei ;
Wang, Shuang ;
Guo, Guang-Can ;
Han, Zheng-Fu .
PHYSICAL REVIEW APPLIED, 2019, 11 (03)
[6]   Simple security proof of twin-field type quantum key distribution protocol [J].
Curty, Marcos ;
Azuma, Koji ;
Lo, Hoi-Kwong .
NPJ QUANTUM INFORMATION, 2019, 5 (1)
[7]   Measurement-device-independent quantum key distribution with insecure sources [J].
Ding, Hua-Jian ;
Zhou, Xing-Yu ;
Zhang, Chun-Hui ;
Li, Jian ;
Wang, Qin .
OPTICS LETTERS, 2022, 47 (03) :665-668
[8]  
Dynes J F., 2019, NPJ QUANTUM INFORM, V5, P10, DOI [10.1038/s41534-019-0124-4, DOI 10.1038/S41534-019-0124-4]
[9]   Countermeasure against bright-light attack on superconducting nanowire single-photon detector in quantum key distribution [J].
Elezov, Mikhail ;
Ozhegov, Roman ;
Goltsman, Gregory ;
Makarov, Vadim .
OPTICS EXPRESS, 2019, 27 (21) :30979-30988
[10]   Implementation of quantum key distribution surpassing the linear rate-transmittance bound [J].
Fang, Xiao-Tian ;
Zeng, Pei ;
Liu, Hui ;
Zou, Mi ;
Wu, Weijie ;
Tang, Yan-Lin ;
Sheng, Ying-Jie ;
Xiang, Yao ;
Zhang, Weijun ;
Li, Hao ;
Wang, Zhen ;
You, Lixing ;
Li, Ming-Jun ;
Chen, Hao ;
Chen, Yu-Ao ;
Zhang, Qiang ;
Peng, Cheng-Zhi ;
Ma, Xiongfeng ;
Chen, Teng-Yun ;
Pan, Jian-Wei .
NATURE PHOTONICS, 2020, 14 (07) :422-+