Dual role of g-C3N4 microtubes in enhancing photocatalytic CO2 reduction of Co3O4 nanoparticles

被引:47
|
作者
Cao, Hui [1 ]
Yan, Yumeng [1 ]
Wang, Yuan [2 ]
Chen, Fei-Fei [1 ]
Yu, Yan [1 ]
机构
[1] Fuzhou Univ, Coll Mat Sci & Engn, Key Lab Adv Mat Technol, Fuzhou 350108, Peoples R China
[2] Jiaxing Univ, Coll Biol Chem Sci & Engn, Jiaxing 314001, Peoples R China
基金
中国国家自然科学基金;
关键词
CO2; reduction; Photocatalysis; P-n junction; Tubular heterojunction; P-N HETEROJUNCTION; DOPED CARBON; ORGANIC FRAMEWORK; QUANTUM DOTS; DEGRADATION; NANOSHEETS; PERFORMANCE; FABRICATION; CONVERSION; EVOLUTION;
D O I
10.1016/j.carbon.2022.09.029
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
The activity of photocatalytic CO2 reduction (PCR) remains inadequate due to the thermodynamically stable CO2 molecules and sluggish carrier kinetics. This work simultaneously adopts active site and heterojunction engineering to collaboratively enhance PCR. A heterojunction of g-C3N4 microtube-supported Co3O4 nanoparticle has been developed through the hydrothermal pretreatment and calcination processes. The g-C3N4 microtubes play dual roles in enhancing PCR of Co3O4: (1) they act as a substrate to support Co3O4 nanoparticles, thereby making small size and good dispersion of Co3O4 nanoparticles. The Co active sites can be highly exposed to accept photogenerated electrons and capture CO2 molecules; and (2) the p-type Co3O4 nanoparticles and n-type g-C3N4 microtubes build a p-n junction. An internal electric field is created to expedite the charge transfer. As a result, the g-C3N4 microtube-supported Co3O4 nanoparticle affords a significantly high turnover number (TON) of 24.72, which is 24-fold higher than that of the pure Co3O4 and comparable to state-of-the-art photocatalysts.
引用
收藏
页码:415 / 424
页数:10
相关论文
共 50 条
  • [1] Phosphorylation of g-C3N4 for enhanced photocatalytic CO2 reduction
    Ye, Liqun
    Wu, Dan
    Chu, Ka Him
    Wang, Bo
    Xie, Haiquan
    Yip, Ho Yin
    Wong, Po Keung
    CHEMICAL ENGINEERING JOURNAL, 2016, 304 : 376 - 383
  • [2] Heterostructures based on g-C3N4 for the photocatalytic CO2 reduction
    Alekseev, Roman F.
    Saraev, Andrey A.
    Kurenkova, Anna Yu.
    Kozlova, Ekaterina A.
    RUSSIAN CHEMICAL REVIEWS, 2024, 93 (05)
  • [3] Spatial distribution of ZnIn2S4 nanosheets on g-C3N4 microtubes promotes photocatalytic CO2 reduction
    Chen, Kaihang
    Wang, Xuanwei
    Li, Qiuyun
    Feng, Ya-Nan
    Chen, Fei-Fei
    Yu, Yan
    CHEMICAL ENGINEERING JOURNAL, 2021, 418
  • [4] A review on g-C3N4 for photocatalytic water splitting and CO2 reduction
    Ye, Sheng
    Wang, Rong
    Wu, Ming-Zai
    Yuan, Yu-Peng
    APPLIED SURFACE SCIENCE, 2015, 358 : 15 - 27
  • [5] Photocatalytic CO2 Reduction over g-C3N4 Based Materials
    Cai, Wei-Qin
    Zhang, Feng-Jun
    Kong, Cui
    Kai, Chun-Mei
    Oh, Won-Chun
    KOREAN JOURNAL OF MATERIALS RESEARCH, 2020, 30 (11): : 581 - 588
  • [6] NiO/g-C3N4 quantum dots for photocatalytic CO2 reduction
    Tao, Feifei
    Dong, Yali
    Yang, Lingang
    APPLIED SURFACE SCIENCE, 2023, 638
  • [7] g-C3N4 based composite photocatalysts for photocatalytic CO2 reduction
    Sun, Zhuxing
    Wang, Haiqiang
    Wu, Zhongbiao
    Wang, Lianzhou
    CATALYSIS TODAY, 2018, 300 : 160 - 172
  • [8] Synergy of dual single Ni and Co atoms on borate modified g-C3N4 for photocatalytic CO2 reduction
    Liu, Yang
    Qu, Binhong
    Zhang, Ziqing
    Sun, Jianhui
    Zhao, Xiaomeng
    Bai, Linlu
    Jing, Liqiang
    MATERIALS RESEARCH BULLETIN, 2022, 153
  • [9] Core-shell engineered g-C3N4 @ NaNbO3 for enhancing photocatalytic reduction of CO2
    Wang, Shuo
    Yin, Haotian
    Wang, Lei
    Ding, Jing
    Zhang, Jinfeng
    Wan, Hui
    Guan, Guofeng
    NANOTECHNOLOGY, 2024, 35 (19)
  • [10] Porous In2O3 Hollow Tube Infused with g-C3N4 for CO2 Photocatalytic Reduction
    Wang, Letian
    Chen, Yuexing
    Zhang, Chenchen
    Zhong, Ziyi
    Amirav, Lilac
    ACS APPLIED MATERIALS & INTERFACES, 2024, 16 (04) : 4581 - 4591