Complete replica solution for the transverse field Sherrington-Kirkpatrick spin glass model with continuous-time quantum Monte Carlo method

被引:2
作者
Kiss, Annamaria [1 ]
Zarand, Gergely [2 ,3 ]
Lovas, Izabella [4 ]
机构
[1] Wigner Res Ctr Phys, Inst Solid State Phys & Opt, POB 49, H-1525 Budapest, Hungary
[2] Budapest Univ Technol & Econ, Inst Phys, Dept Theoret Phys, Muegyetem rkp 3, H-1111 Budapest, Hungary
[3] Budapest Univ Technol & Econ, MTA BME Quantum Dynam & Correlat Res Grp, Muegyetem rkp 3, H-1111 Budapest, Hungary
[4] Univ Calif Santa Barbara, Kavli Inst Theoret Phys, Santa Barbara, CA 93106 USA
关键词
SYMMETRY-BREAKING; STABILITY; DYNAMICS; BEHAVIOR;
D O I
10.1103/PhysRevB.109.024431
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
We construct a complete numerically exact solution of a mean-field quantum spin glass model-the transverse field Sherrington-Kirkpatrick model-by implementing a continuous-time quantum Monte Carlo method in the presence of full replica symmetry breaking. We extract the full numerically exact phase diagram, displaying a glassy phase with continuous replica symmetry breaking at small transverse fields and low temperatures. A paramagnetic phase emerges once thermal and quantum fluctuations melt the spin glass. We characterize both phases by extracting the order parameter as well as the static and dynamical local spin susceptibilities. The static susceptibility shows a plateau in the glassy phase, but it remains smooth across the phase boundary. For the imaginary part of the dynamical susceptibility, we find an Ohmic, i.e., linear in omega, scaling for small frequencies omega, with a slope independent of the transverse field. These results compare qualitatively well with ac susceptibility measurements on a dipole-coupled three-dimensional Ising magnet-the LiHoxY1-xF4 compound-in a transverse magnetic field. Our work provides a general framework for the exact numerical solution of mean-field quantum glass models, and it constitutes an important step towards understanding glassiness in realistic systems.
引用
收藏
页数:20
相关论文
共 58 条
  • [41] SHERRINGTON-KIRKPATRICK MODEL IN A TRANSVERSE FIELD - ABSENCE OF REPLICA SYMMETRY-BREAKING DUE TO QUANTUM FLUCTUATIONS
    RAY, P
    CHAKRABARTI, BK
    CHAKRABARTI, A
    [J]. PHYSICAL REVIEW B, 1989, 39 (16): : 11828 - 11832
  • [42] LANDAU THEORY OF QUANTUM SPIN-GLASSES OF ROTORS AND ISING SPINS
    READ, N
    SACHDEV, S
    YE, J
    [J]. PHYSICAL REVIEW B, 1995, 52 (01): : 384 - 410
  • [43] Dynamics of the infinite-range ising spin-glass model in a transverse field
    Rozenberg, MJ
    Grempel, DR
    [J]. PHYSICAL REVIEW LETTERS, 1998, 81 (12) : 2550 - 2553
  • [44] GAPLESS SPIN-FLUID GROUND-STATE IN A RANDOM QUANTUM HEISENBERG MAGNET
    SACHDEV, S
    YE, JW
    [J]. PHYSICAL REVIEW LETTERS, 1993, 70 (21) : 3339 - 3342
  • [45] Theory of quantum annealing of an Ising spin glass
    Santoro, GE
    Martonák, R
    Tosatti, E
    Car, R
    [J]. SCIENCE, 2002, 295 (5564) : 2427 - 2430
  • [46] Variational Ansatz for the Ground State of the Quantum Sherrington-Kirkpatrick Model
    Schindler, Paul M.
    Guaita, Tommaso
    Shi, Tao
    Demler, Eugene
    Cirac, J. Ignacio
    [J]. PHYSICAL REVIEW LETTERS, 2022, 129 (22)
  • [47] SOLVABLE MODEL OF A SPIN-GLASS
    SHERRINGTON, D
    KIRKPATRICK, S
    [J]. PHYSICAL REVIEW LETTERS, 1975, 35 (26) : 1792 - 1796
  • [48] THE LANDSCAPE OF THE TRAVELING SALESMAN PROBLEM
    STADLER, PF
    SCHNABL, W
    [J]. PHYSICS LETTERS A, 1992, 161 (04) : 337 - 344
  • [49] Tanaka S., 2017, QUANTUM SPIN GLASSES
  • [50] Tikhanovskaya M., private communication