Complete replica solution for the transverse field Sherrington-Kirkpatrick spin glass model with continuous-time quantum Monte Carlo method

被引:2
作者
Kiss, Annamaria [1 ]
Zarand, Gergely [2 ,3 ]
Lovas, Izabella [4 ]
机构
[1] Wigner Res Ctr Phys, Inst Solid State Phys & Opt, POB 49, H-1525 Budapest, Hungary
[2] Budapest Univ Technol & Econ, Inst Phys, Dept Theoret Phys, Muegyetem rkp 3, H-1111 Budapest, Hungary
[3] Budapest Univ Technol & Econ, MTA BME Quantum Dynam & Correlat Res Grp, Muegyetem rkp 3, H-1111 Budapest, Hungary
[4] Univ Calif Santa Barbara, Kavli Inst Theoret Phys, Santa Barbara, CA 93106 USA
关键词
SYMMETRY-BREAKING; STABILITY; DYNAMICS; BEHAVIOR;
D O I
10.1103/PhysRevB.109.024431
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
We construct a complete numerically exact solution of a mean-field quantum spin glass model-the transverse field Sherrington-Kirkpatrick model-by implementing a continuous-time quantum Monte Carlo method in the presence of full replica symmetry breaking. We extract the full numerically exact phase diagram, displaying a glassy phase with continuous replica symmetry breaking at small transverse fields and low temperatures. A paramagnetic phase emerges once thermal and quantum fluctuations melt the spin glass. We characterize both phases by extracting the order parameter as well as the static and dynamical local spin susceptibilities. The static susceptibility shows a plateau in the glassy phase, but it remains smooth across the phase boundary. For the imaginary part of the dynamical susceptibility, we find an Ohmic, i.e., linear in omega, scaling for small frequencies omega, with a slope independent of the transverse field. These results compare qualitatively well with ac susceptibility measurements on a dipole-coupled three-dimensional Ising magnet-the LiHoxY1-xF4 compound-in a transverse magnetic field. Our work provides a general framework for the exact numerical solution of mean-field quantum glass models, and it constitutes an important step towards understanding glassiness in realistic systems.
引用
收藏
页数:20
相关论文
共 58 条
  • [1] SPIN-GLASS MODELS OF NEURAL NETWORKS
    AMIT, DJ
    GUTFREUND, H
    [J]. PHYSICAL REVIEW A, 1985, 32 (02): : 1007 - 1018
  • [2] Quantum and classical glass transitions in LiHoxY1-xF4
    Ancona-Torres, C.
    Silevitch, D. M.
    Aeppli, G.
    Rosenbaum, T. F.
    [J]. PHYSICAL REVIEW LETTERS, 2008, 101 (05)
  • [3] Long-Range Quantum Ising Spin Glasses at T=0: Gapless Collective Excitations and Universality
    Andreanov, A.
    Mueller, M.
    [J]. PHYSICAL REVIEW LETTERS, 2012, 109 (17)
  • [4] Melting transition of an Ising glass driven by a magnetic field
    Arrachea, L
    Dalidovich, D
    Dobrosavljevic, V
    Rozenberg, MJ
    [J]. PHYSICAL REVIEW B, 2004, 69 (06):
  • [5] Dynamical response of quantum spin-glass models at T=0
    Arrachea, L
    Rozenberg, MJ
    [J]. PHYSICAL REVIEW LETTERS, 2001, 86 (22) : 5172 - 5175
  • [6] Screening and nonlocal correlations in the extended Hubbard model from self-consistent combined GW and dynamical mean field theory
    Ayral, Thomas
    Biermann, Silke
    Werner, Philipp
    [J]. PHYSICAL REVIEW B, 2013, 87 (12)
  • [7] REPLICA THEORY OF QUANTUM SPIN-GLASSES
    BRAY, AJ
    MOORE, MA
    [J]. JOURNAL OF PHYSICS C-SOLID STATE PHYSICS, 1980, 13 (24): : L655 - L660
  • [8] Quantum annealing of a disordered magnet
    Brooke, J
    Bitko, D
    Rosenbaum, TF
    Aeppli, G
    [J]. SCIENCE, 1999, 284 (5415) : 779 - 781
  • [9] STABILITY ANALYSIS OF AN ISING SPIN-GLASS WITH TRANSVERSE FIELD
    BUTTNER, G
    USADEL, KD
    [J]. PHYSICAL REVIEW B, 1990, 41 (01): : 428 - 431
  • [10] Critical Slowing Down Exponents of Mode Coupling Theory
    Caltagirone, F.
    Ferrari, U.
    Leuzzi, L.
    Parisi, G.
    Ricci-Tersenghi, F.
    Rizzo, T.
    [J]. PHYSICAL REVIEW LETTERS, 2012, 108 (08)