Thermoelectric power factor of composites

被引:6
作者
Riss, A. [1 ]
Garmroudi, F. [1 ]
Parzer, M. [1 ]
Pustogow, A. [1 ]
Mori, T. [2 ,3 ]
Bauer, E. [1 ]
机构
[1] Tech Univ Wien, Inst Solid State Phys, A-1040 Vienna, Austria
[2] Natl Inst Mat Sci, Int Ctr Mat Nanoarchitecton WPI MANA, Tsukuba 3050044, Japan
[3] Univ Tsukuba, Grad Sch Pure & Appl Sci, Tsukuba 3058577, Japan
基金
日本科学技术振兴机构;
关键词
THERMAL-CONDUCTIVITY; AG ADDITION; ENHANCEMENT; PERFORMANCE; FIGURE; MERIT; SKUTTERUDITES; THERMOPOWER; EFFICIENCY; DEVICES;
D O I
10.1103/PhysRevApplied.21.014002
中图分类号
O59 [应用物理学];
学科分类号
摘要
To improve the performance of thermoelectric materials, a highly effective and widely implemented approach is to create multiphase composites. These composites are designed to impede phononic heat transport, which accounts for the majority of thermal conductivity in conventional thermoelectric semiconductors. In 1999, Bergman and Fel [J. Appl. Phys. 85(12), 8205-8216 (1999)] reported that also the electronic properties, specifically the power factor S2 sigma, can be significantly enhanced in two-phase composites consisting of a highly conducting, simple metal anda high-performance thermoelectric arranged in an optimal manner, sparking great experimental interest. In this work, we challenge the theoretical results of Bergman and Fel and the conclusions drawn therein by utilizing a simple serial model. We show that, while the improvement of the power factor is indeed extraordinary, the results lead to a misleading interpretation of the overall thermoelectric performance of the material. As a result, we argue that the power factor is not a suitable metric for evaluating multiphase materials and composites, and that the figure of merit zT must be used instead. Nonetheless, we demonstrate that the best thermoelectric composite consists of a highly conductive metal and a high-performance thermoelectric.
引用
收藏
页数:10
相关论文
共 50 条
[1]   Active Peltier Coolers Based on Correlated and Magnon-Drag Metals [J].
Adams, M. J. ;
Verosky, M. ;
Zebarjadi, M. ;
Heremans, J. P. .
PHYSICAL REVIEW APPLIED, 2019, 11 (05)
[2]   Enhancement of thermoelectric power factor in composite thermoelectrics [J].
Bergman, DJ ;
Fel, LG .
JOURNAL OF APPLIED PHYSICS, 1999, 85 (12) :8205-8216
[3]   THERMOELECTRIC PROPERTIES OF A COMPOSITE MEDIUM [J].
BERGMAN, DJ ;
LEVY, O .
JOURNAL OF APPLIED PHYSICS, 1991, 70 (11) :6821-6833
[4]   High-performance bulk thermoelectrics with all-scale hierarchical architectures [J].
Biswas, Kanishka ;
He, Jiaqing ;
Blum, Ivan D. ;
Wu, Chun-I ;
Hogan, Timothy P. ;
Seidman, David N. ;
Dravid, Vinayak P. ;
Kanatzidis, Mercouri G. .
NATURE, 2012, 489 (7416) :414-418
[5]   The influence of Thomson effect on the maximum power output and maximum efficiency of a thermoelectric generator [J].
Chen, JC ;
Yan, ZJ ;
Wu, LQ .
JOURNAL OF APPLIED PHYSICS, 1996, 79 (11) :8823-8828
[6]   Thermoelectric properties of Ca3Co4O9-Co3O4 composites [J].
Delorme, F. ;
Diaz-Chao, P. ;
Guilmeau, E. ;
Giovannelli, F. .
CERAMICS INTERNATIONAL, 2015, 41 (08) :10038-10043
[7]   Realizing high figure of merit in heavy-band p-type half-Heusler thermoelectric materials [J].
Fu, Chenguang ;
Bai, Shengqiang ;
Liu, Yintu ;
Tang, Yunshan ;
Chen, Lidong ;
Zhao, Xinbing ;
Zhu, Tiejun .
NATURE COMMUNICATIONS, 2015, 6
[8]   Band engineering of high performance p-type FeNbSb based half-Heusler thermoelectric materials for figure of merit zT > 1 [J].
Fu, Chenguang ;
Zhu, Tiejun ;
Liu, Yintu ;
Xie, Hanhui ;
Zhao, Xinbing .
ENERGY & ENVIRONMENTAL SCIENCE, 2015, 8 (01) :216-220
[9]   THERMOPOWER OF PURE ALUMINUM [J].
GRIPSHOVER, RJ ;
VANZYTVELD, JB ;
BASS, J .
PHYSICAL REVIEW, 1967, 163 (03) :598-+
[10]   Experimental study of the thermoelectric power factor enhancement in composites [J].
Heremans, J. P. ;
Jaworski, C. M. .
APPLIED PHYSICS LETTERS, 2008, 93 (12)