Limit theory for an AR(1) model with intercept and a possible infinite variance

被引:0
作者
Liu, Qing [1 ,2 ,3 ]
Xia, Chiyu [1 ,2 ]
Liu, Xiaohui [1 ,2 ]
机构
[1] Jiangxi Univ Finance & Econ, Sch Stat & Data Sci, Nanchang 330013, Jiangxi, Peoples R China
[2] Jiangxi Univ Finance & Econ, Key Lab Data Sci Finance & Econ, Nanchang 330013, Jiangxi, Peoples R China
[3] Jiangxi Univ Finance & Econ, Res Ctr Appl Stat, Nanchang 330013, Jiangxi, Peoples R China
基金
中国博士后科学基金;
关键词
Limit distribution; Autoregressive model; Infinite variance; TIME-SERIES; UNIT-ROOT; INFERENCE; INTERVAL;
D O I
10.1007/s13226-023-00506-y
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we derive the limit distribution of the least squares estimator for an AR(1) model with a non-zero intercept and a possible infinite variance. It turns out that the estimator has a quite different limit for the cases of |p| < 1, |p| > 1, and p = 1 + c/n(a) for some constant c is an element of Rand alpha is an element of (0, 1], and whether or not the variance of the model errors is infinite also has a great impact on both the convergence rate and the limit distribution of the estimator.
引用
收藏
页码:615 / 630
页数:16
相关论文
共 21 条
[1]   ON ASYMPTOTIC DISTRIBUTIONS OF ESTIMATES OF PARAMETERS OF STOCHASTIC DIFFERENCE-EQUATIONS [J].
ANDERSON, TW .
ANNALS OF MATHEMATICAL STATISTICS, 1959, 30 (03) :676-687
[2]   A CONDITIONAL-HETEROSKEDASTICITY-ROBUST CONFIDENCE INTERVAL FOR THE AUTOREGRESSIVE PARAMETER [J].
Andrews, Donald W. K. ;
Guggenberger, Patrik .
REVIEW OF ECONOMICS AND STATISTICS, 2014, 96 (02) :376-381
[3]   Hybrid and Size-Corrected Subsampling Methods [J].
Andrews, Donald W. K. ;
Guggenberger, Patrik .
ECONOMETRICA, 2009, 77 (03) :721-762
[4]   HETEROSKEDASTIC TIME SERIES WITH A UNIT ROOT [J].
Cavaliere, Giuseppe ;
Taylor, A. M. Robert .
ECONOMETRIC THEORY, 2009, 25 (05) :1228-1276
[5]   TOWARD A UNIFIED INTERVAL ESTIMATION OF AUTOREGRESSIONS [J].
Chan, Ngai Hang ;
Li, Deyuan ;
Peng, Liang .
ECONOMETRIC THEORY, 2012, 28 (03) :705-717
[6]   ASYMPTOTIC INFERENCE FOR NEARLY NONSTATIONARY AR(1) PROCESSES [J].
CHAN, NH ;
WEI, CZ .
ANNALS OF STATISTICS, 1987, 15 (03) :1050-1063
[7]  
Csörgö M, 2003, ANN PROBAB, V31, P1228
[8]   LIKELIHOOD RATIO STATISTICS FOR AUTOREGRESSIVE TIME-SERIES WITH A UNIT-ROOT [J].
DICKEY, DA ;
FULLER, WA .
ECONOMETRICA, 1981, 49 (04) :1057-1072
[9]   A strategy for testing the unit root in AR(1) model with intercept: a Monte Carlo experiment [J].
Dios-Palomares, Raffaela ;
Roldan, Jose A. .
JOURNAL OF STATISTICAL PLANNING AND INFERENCE, 2006, 136 (08) :2685-2705
[10]  
Embrechts P., 1997, MODELLING EXTREMAL E, DOI DOI 10.1007/978-3-642-33483-2