HaN-Seg: The head and neck organ-at-risk CT and MR segmentation dataset
被引:41
作者:
Podobnik, Gasper
论文数: 0引用数: 0
h-index: 0
机构:
Univ Ljubljana, Fac Elect Engn, Ljubljana, SloveniaUniv Ljubljana, Fac Elect Engn, Ljubljana, Slovenia
Podobnik, Gasper
[1
]
Strojan, Primoz
论文数: 0引用数: 0
h-index: 0
机构:
Inst Oncol Ljubljana, Ljubljana, SloveniaUniv Ljubljana, Fac Elect Engn, Ljubljana, Slovenia
Strojan, Primoz
[2
]
Peterlin, Primoz
论文数: 0引用数: 0
h-index: 0
机构:
Inst Oncol Ljubljana, Ljubljana, SloveniaUniv Ljubljana, Fac Elect Engn, Ljubljana, Slovenia
Peterlin, Primoz
[2
]
Ibragimov, Bulat
论文数: 0引用数: 0
h-index: 0
机构:
Univ Ljubljana, Fac Elect Engn, Ljubljana, Slovenia
Univ Copenhagen, Dept Comp Sci, Copenhagen, DenmarkUniv Ljubljana, Fac Elect Engn, Ljubljana, Slovenia
Ibragimov, Bulat
[1
,3
]
Vrtovec, Tomaz
论文数: 0引用数: 0
h-index: 0
机构:
Univ Ljubljana, Fac Elect Engn, Ljubljana, Slovenia
Univ Ljubljana, Fac Elect Engn, Trzaska Cesta 25, SI-1000 Ljubljana, SloveniaUniv Ljubljana, Fac Elect Engn, Ljubljana, Slovenia
Vrtovec, Tomaz
[1
,4
]
机构:
[1] Univ Ljubljana, Fac Elect Engn, Ljubljana, Slovenia
auto-segmentation;
computed tomography;
head and neck cancer;
image dataset;
magnetic resonance;
radiation therapy;
AUTO-SEGMENTATION;
IMAGE REGISTRATION;
DELINEATION;
MACHINE;
D O I:
10.1002/mp.16197
中图分类号:
R8 [特种医学];
R445 [影像诊断学];
学科分类号:
1002 ;
100207 ;
1009 ;
摘要:
PurposeFor the cancer in the head and neck (HaN), radiotherapy (RT) represents an important treatment modality. Segmentation of organs-at-risk (OARs) is the starting point of RT planning, however, existing approaches are focused on either computed tomography (CT) or magnetic resonance (MR) images, while multimodal segmentation has not been thoroughly explored yet. We present a dataset of CT and MR images of the same patients with curated reference HaN OAR segmentations for an objective evaluation of segmentation methods. Acquisition and validation methodsThe cohort consists of HaN images of 56 patients that underwent both CT and T1-weighted MR imaging for image-guided RT. For each patient, reference segmentations of up to 30 OARs were obtained by experts performing manual pixel-wise image annotation. By maintaining the distribution of patient age and gender, and annotation type, the patients were randomly split into training Set 1 (42 cases or 75%) and test Set 2 (14 cases or 25%). Baseline auto-segmentation results are also provided by training the publicly available deep nnU-Net architecture on Set 1, and evaluating its performance on Set 2. Data format and usage notesThe data are publicly available through an open-access repository under the name HaN-Seg: The Head and Neck Organ-at-Risk CT & MR Segmentation Dataset. Images and reference segmentations are stored in the NRRD file format, where the OAR filenames correspond to the nomenclature recommended by the American Association of Physicists in Medicine, and OAR and demographics information is stored in separate comma-separated value files. Potential applicationsThe HaN-Seg: The Head and Neck Organ-at-Risk CT & MR Segmentation Challenge is launched in parallel with the dataset release to promote the development of automated techniques for OAR segmentation in the HaN. Other potential applications include out-of-challenge algorithm development and benchmarking, as well as external validation of the developed algorithms.
机构:
Univ Washington, Dept Med, Div Med Oncol, Thorac Head & Neck Malignancies,Seattle Canc Care, Seattle, WA USA
Fred Hutchinson Canc Res Ctr, 1124 Columbia St, Seattle, WA 98104 USAUniv Washington, Dept Med, Div Med Oncol, Thorac Head & Neck Malignancies,Seattle Canc Care, Seattle, WA USA
机构:
Univ Michigan, Dept Radiat Oncol, Ann Arbor, MI 48103 USA
Univ Michigan, Appl Phys Program, Ann Arbor, MI 48109 USAUniv Michigan, Dept Radiat Oncol, Ann Arbor, MI 48103 USA
Cui, Sunan
;
Tseng, Huan-Hsin
论文数: 0引用数: 0
h-index: 0
机构:
Univ Michigan, Dept Radiat Oncol, Ann Arbor, MI 48103 USAUniv Michigan, Dept Radiat Oncol, Ann Arbor, MI 48103 USA
Tseng, Huan-Hsin
;
论文数: 引用数:
h-index:
机构:
Pakela, Julia
;
Ten Haken, Randall K.
论文数: 0引用数: 0
h-index: 0
机构:
Univ Michigan, Dept Radiat Oncol, Ann Arbor, MI 48103 USAUniv Michigan, Dept Radiat Oncol, Ann Arbor, MI 48103 USA
Ten Haken, Randall K.
;
El Naqa, Issam
论文数: 0引用数: 0
h-index: 0
机构:
Univ Michigan, Dept Radiat Oncol, Ann Arbor, MI 48103 USAUniv Michigan, Dept Radiat Oncol, Ann Arbor, MI 48103 USA
机构:
Univ Washington, Dept Med, Div Med Oncol, Thorac Head & Neck Malignancies,Seattle Canc Care, Seattle, WA USA
Fred Hutchinson Canc Res Ctr, 1124 Columbia St, Seattle, WA 98104 USAUniv Washington, Dept Med, Div Med Oncol, Thorac Head & Neck Malignancies,Seattle Canc Care, Seattle, WA USA
机构:
Univ Michigan, Dept Radiat Oncol, Ann Arbor, MI 48103 USA
Univ Michigan, Appl Phys Program, Ann Arbor, MI 48109 USAUniv Michigan, Dept Radiat Oncol, Ann Arbor, MI 48103 USA
Cui, Sunan
;
Tseng, Huan-Hsin
论文数: 0引用数: 0
h-index: 0
机构:
Univ Michigan, Dept Radiat Oncol, Ann Arbor, MI 48103 USAUniv Michigan, Dept Radiat Oncol, Ann Arbor, MI 48103 USA
Tseng, Huan-Hsin
;
论文数: 引用数:
h-index:
机构:
Pakela, Julia
;
Ten Haken, Randall K.
论文数: 0引用数: 0
h-index: 0
机构:
Univ Michigan, Dept Radiat Oncol, Ann Arbor, MI 48103 USAUniv Michigan, Dept Radiat Oncol, Ann Arbor, MI 48103 USA
Ten Haken, Randall K.
;
El Naqa, Issam
论文数: 0引用数: 0
h-index: 0
机构:
Univ Michigan, Dept Radiat Oncol, Ann Arbor, MI 48103 USAUniv Michigan, Dept Radiat Oncol, Ann Arbor, MI 48103 USA