Satellite-based estimation of daily suspended sediment load using hybrid intelligent models

被引:11
作者
Doroudi, Siyamak [1 ]
Sharafati, Ahmad [1 ]
Mohajeri, Seyed Hossein [2 ]
机构
[1] Islamic Azad Univ, Dept Civil Engn, Sci & Res Branch, Tehran, Iran
[2] Kharazmi Univ, Fac Engn, Dept Civil & Environm Engn, Tehran, Iran
关键词
suspended sediment load; optimization method; satellite products; soil moisture; precipitation; support vector regression; sediment rating curve; SUPPORT VECTOR MACHINE; ARTIFICIAL NEURAL-NETWORK; SOIL-MOISTURE; PRECIPITATION PRODUCTS; SUPERVISED COMMITTEE; TRANSPORT DYNAMICS; GAUGE OBSERVATIONS; FUZZY INFERENCE; PREDICTION; RAINFALL;
D O I
10.1080/02626667.2022.2156292
中图分类号
TV21 [水资源调查与水利规划];
学科分类号
081501 ;
摘要
This study uses a combination of support vector regression models, particle swarm optimization, and grey wolf optimization algorithms to predict suspended sediment load. For this purpose, The Satellite Precipitation of Climate Hazards Group InfraRed Precipitation with Station (CHIRPS) and Global Land Data Assimilation System (GLDAS) soil moisture products are utilized as the predictors. The prediction models are evaluated based on various visual and quantitative indicators. The Taylor and radar diagrams confirm that the support vector regression-particle swarm optimization best agrees with the observed values. Moreover, the obtained quantitative indices show that the support vector regression-particle swarm optimization model offers better performance than other models used in the present study. The values of the best indices are: Pearson correlation coefficient of 0.997, relative root mean square error of 13.17, percentage bias of 4.05, and Nash-Sutcliffe efficiency of 0.995.
引用
收藏
页码:307 / 324
页数:18
相关论文
共 74 条
[21]   A comparative study of artificial neural network, adaptive neuro fuzzy inference system and support vector machine for forecasting river flow in the semiarid mountain region [J].
He, Zhibin ;
Wen, Xiaohu ;
Liu, Hu ;
Du, Jun .
JOURNAL OF HYDROLOGY, 2014, 509 :379-386
[22]   Assessing the applicability of TMPA-3B42V7 precipitation dataset in wavelet-support vector machine approach for suspended sediment load prediction [J].
Himanshu, Sushil Kumar ;
Pandey, Ashish ;
Yadav, Basant .
JOURNAL OF HYDROLOGY, 2017, 550 :103-117
[23]   An evaluation of sediment rating curves for estimating suspended sediment concentrations for subsequent flux calculations [J].
Horowitz, AJ .
HYDROLOGICAL PROCESSES, 2003, 17 (17) :3387-3409
[24]   Evaluation of latest TMPA and CMORPH satellite precipitation products over Yellow River Basin [J].
Jiang, Shan-hu ;
Zhou, Meng ;
Ren, Li-liang ;
Cheng, Xue-rong ;
Zhang, Peng-ju .
WATER SCIENCE AND ENGINEERING, 2016, 9 (02) :87-96
[25]  
Jolliffe I.T., 1986, The Principal Component Analysis, DOI 10.1007/b98835
[26]  
Kennedy J., 2001, Swarm Intelligence, DOI DOI 10.1016/B978-155860595-4/50007-3
[27]   Inclusive Multiple Models (IMM) for predicting groundwater levels and treating heterogeneity [J].
Khatibi, Rahman ;
Nadiri, Ata Allah .
GEOSCIENCE FRONTIERS, 2021, 12 (02) :713-724
[28]   A global comparison of alternate AMSR2 soil moisture products: Why do they differ? [J].
Kim, Seokhyeon ;
Liu, Yi. Y. ;
Johnson, Fiona M. ;
Parinussa, Robert M. ;
Sharma, Ashish .
REMOTE SENSING OF ENVIRONMENT, 2015, 161 :43-62
[29]   Modeling discharge-suspended sediment relationship using least square support vector machine [J].
Kisi, Ozgur .
JOURNAL OF HYDROLOGY, 2012, 456 :110-120
[30]   Spatio-temporal soil moisture patterns - A meta-analysis using plot to catchment scale data [J].
Korres, W. ;
Reichenau, T. G. ;
Fiener, P. ;
Koyama, C. N. ;
Bogena, H. R. ;
Comelissen, T. ;
Baatz, R. ;
Herbst, M. ;
Diekkrueger, B. ;
Vereecken, H. ;
Schneider, K. .
JOURNAL OF HYDROLOGY, 2015, 520 :326-341