Satellite-based estimation of daily suspended sediment load using hybrid intelligent models

被引:11
作者
Doroudi, Siyamak [1 ]
Sharafati, Ahmad [1 ]
Mohajeri, Seyed Hossein [2 ]
机构
[1] Islamic Azad Univ, Dept Civil Engn, Sci & Res Branch, Tehran, Iran
[2] Kharazmi Univ, Fac Engn, Dept Civil & Environm Engn, Tehran, Iran
关键词
suspended sediment load; optimization method; satellite products; soil moisture; precipitation; support vector regression; sediment rating curve; SUPPORT VECTOR MACHINE; ARTIFICIAL NEURAL-NETWORK; SOIL-MOISTURE; PRECIPITATION PRODUCTS; SUPERVISED COMMITTEE; TRANSPORT DYNAMICS; GAUGE OBSERVATIONS; FUZZY INFERENCE; PREDICTION; RAINFALL;
D O I
10.1080/02626667.2022.2156292
中图分类号
TV21 [水资源调查与水利规划];
学科分类号
081501 ;
摘要
This study uses a combination of support vector regression models, particle swarm optimization, and grey wolf optimization algorithms to predict suspended sediment load. For this purpose, The Satellite Precipitation of Climate Hazards Group InfraRed Precipitation with Station (CHIRPS) and Global Land Data Assimilation System (GLDAS) soil moisture products are utilized as the predictors. The prediction models are evaluated based on various visual and quantitative indicators. The Taylor and radar diagrams confirm that the support vector regression-particle swarm optimization best agrees with the observed values. Moreover, the obtained quantitative indices show that the support vector regression-particle swarm optimization model offers better performance than other models used in the present study. The values of the best indices are: Pearson correlation coefficient of 0.997, relative root mean square error of 13.17, percentage bias of 4.05, and Nash-Sutcliffe efficiency of 0.995.
引用
收藏
页码:307 / 324
页数:18
相关论文
共 74 条
[1]   Evaluation of satellite-retrieved extreme precipitation rates across the central United States [J].
AghaKouchak, A. ;
Behrangi, A. ;
Sorooshian, S. ;
Hsu, K. ;
Amitai, E. .
JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES, 2011, 116
[2]  
Araghinejad S., 2014, Data-driven modeling: Using Matlab in water resources and environmental engineering, DOI DOI 10.1007/978-94-007-7506-0
[3]   Prediction of river suspended sediment load using machine learning models and geo-morphometric parameters [J].
Asadi M. ;
Fathzadeh A. ;
Kerry R. ;
Ebrahimi-Khusfi Z. ;
Taghizadeh-Mehrjardi R. .
Arabian Journal of Geosciences, 2021, 14 (18)
[4]  
Awad M., 2015, Efficient learning machines, DOI [DOI 10.1007/978-1-4302-5990-9, 10.1007/978-1-4302-5990-9]
[5]   Artificial intelligence simulation of suspended sediment load with different membership functions of ANFIS [J].
Babanezhad, Meisam ;
Behroyan, Iman ;
Marjani, Azam ;
Shirazian, Saeed .
NEURAL COMPUTING & APPLICATIONS, 2021, 33 (12) :6819-6833
[6]   Optimization of DRASTIC method by artificial neural network, nitrate vulnerability index, and composite DRASTIC models to assess groundwater vulnerability for unconfined aquifer of Shiraz Plain, Iran [J].
Baghapour, Mohammad Ali ;
Nobandegani, Amir Fadaei ;
Talebbeydokhti, Nasser ;
Bagherzadeh, Somayeh ;
Nadiri, Ata Allah ;
Gharekhani, Maryam ;
Chitsazan, Nima .
JOURNAL OF ENVIRONMENTAL HEALTH SCIENCE AND ENGINEERING, 2016, 14
[7]   Intercomparison and evaluation of three global high-resolution evapotranspiration products across China [J].
Bai, Peng ;
Liu, Xiaomang .
JOURNAL OF HYDROLOGY, 2018, 566 :743-755
[8]   Suspended sediment load prediction using artificial neural network and ant lion optimization algorithm [J].
Banadkooki, Fatemeh Barzegari ;
Ehteram, Mohammad ;
Ahmed, Ali Najah ;
Teo, Fang Yenn ;
Ebrahimi, Mahboube ;
Fai, Chow Ming ;
Huang, Yuk Feng ;
El-Shafie, Ahmed .
ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH, 2020, 27 (30) :38094-38116
[9]   Global-scale evaluation of 22 precipitation datasets using gauge observations and hydrological modeling [J].
Beck, Hylke E. ;
Vergopolan, Noemi ;
Pan, Ming ;
Levizzani, Vincenzo ;
van Dijk, Albert I. J. M. ;
Weedon, Graham P. ;
Brocca, Luca ;
Pappenberger, Florian ;
Huffman, George J. ;
Wood, Eric F. .
HYDROLOGY AND EARTH SYSTEM SCIENCES, 2017, 21 (12) :6201-6217
[10]   MSWEP: 3-hourly 0.25° global gridded precipitation (1979-2015) by merging gauge, satellite, and reanalysis data [J].
Beck, Hylke E. ;
van Dijk, Albert I. J. M. ;
Levizzani, Vincenzo ;
Schellekens, Jaap ;
Miralles, Diego G. ;
Martens, Brecht ;
de Roo, Ad .
HYDROLOGY AND EARTH SYSTEM SCIENCES, 2017, 21 (01) :589-615