Numerical Analysis and Optimization of a Hybrid Layer Structure for Triplet-Triplet Fusion Mechanism in Organic Light-Emitting Diodes

被引:2
作者
Huang, Jun-Yu [1 ,2 ]
Hung, Hsiao-Chun [1 ]
Hsu, Kung-Chi [1 ]
Chen, Chia-Hsun [3 ]
Lee, Pei-Hsi [1 ]
Lin, Hung-Yi [1 ]
Lin, Bo-Yen [4 ]
Leung, Man-kit [3 ]
Chiu, Tien-Lung [5 ]
Lee, Jiun-Haw [1 ]
Friend, Richard H. H. [2 ]
Wu, Yuh-Renn [1 ]
机构
[1] Natl Taiwan Univ, Grad Inst Photon & Optoelect, Dept Elect Engn, Taipei 10617, Taiwan
[2] Univ Cambridge, Cavendish Lab, Cambridge CB3 0HE, England
[3] Natl Taiwan Univ, Dept Chem, Taipei 10617, Taiwan
[4] Natl Dong Hwa Univ, Dept Optoelect Engn, Hualien, Taiwan
[5] Yuan Ze Univ, Dept Elect Engn, Taoyuan 32003, Taiwan
关键词
device modeling; organic light-emitting diodes; triplet- triplet fusion; ACTIVATED DELAYED FLUORESCENCE; CHARGE-TRANSPORT; EFFICIENCY; MOBILITY;
D O I
10.1002/adts.202200633
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
In this study, a steady state and time-dependent exciton diffusion model including singlet and triplet excitons coupled with a modified Poisson and drift-diffusion solver to explain the mechanism of hyper triplet-triplet fusion (TTF) organic light-emitting diodes (OLEDs) is developed. Using this modified simulator, various characteristics of OLEDs, including the current-voltage curve, internal quantum efficiency, transient spectrum, and electric profile are demonstrated. This solver can also be used to explain the mechanism of hyper-TTF-OLEDs and analyze the loss from different exciton mechanisms. Furthermore, we perform additional optimization of hyper-TTF-OLEDs that increases the internal quantum efficiency by approximate to 33% (from 29% to 40%).
引用
收藏
页数:11
相关论文
共 48 条
  • [1] Nearly 100% internal phosphorescence efficiency in an organic light-emitting device
    Adachi, C
    Baldo, MA
    Thompson, ME
    Forrest, SR
    [J]. JOURNAL OF APPLIED PHYSICS, 2001, 90 (10) : 5048 - 5051
  • [2] Very high-efficiency green organic light-emitting devices based on electrophosphorescence
    Baldo, MA
    Lamansky, S
    Burrows, PE
    Thompson, ME
    Forrest, SR
    [J]. APPLIED PHYSICS LETTERS, 1999, 75 (01) : 4 - 6
  • [3] Highly efficient phosphorescent emission from organic electroluminescent devices
    Baldo, MA
    O'Brien, DF
    You, Y
    Shoustikov, A
    Sibley, S
    Thompson, ME
    Forrest, SR
    [J]. NATURE, 1998, 395 (6698) : 151 - 154
  • [4] CHARGE TRANSPORT IN DISORDERED ORGANIC PHOTOCONDUCTORS - A MONTE-CARLO SIMULATION STUDY
    BASSLER, H
    [J]. PHYSICA STATUS SOLIDI B-BASIC RESEARCH, 1993, 175 (01): : 15 - 56
  • [5] Bender Vitor C., 2015, IEEE Industrial Electronics Magazine, V9, P6, DOI 10.1109/MIE.2014.2360324
  • [6] Carrier-density and field-dependent charge-carrier mobility in organic semiconductors with correlated Gaussian disorder
    Bouhassoune, M.
    van Mensfoort, S. L. M.
    Bobbert, P. A.
    Coehoorn, R.
    [J]. ORGANIC ELECTRONICS, 2009, 10 (03) : 437 - 445
  • [7] Chen C.-H., 2022, RES SQUARE, DOI [10.21203/rs.3.rs-994123/v1, DOI 10.21203/RS.3.RS-994123/V1]
  • [8] Liquid crystal display and organic light-emitting diode display: present status and future perspectives
    Chen, Hai-Wei
    Lee, Jiun-Haw
    Lin, Bo-Yen
    Chen, Stanley
    Wu, Shin-Tson
    [J]. LIGHT-SCIENCE & APPLICATIONS, 2018, 7 : 17168 - 17168
  • [9] Superior upconversion fluorescence dopants for highly efficient deep-blue electroluminescent devices
    Chen, Yi-Hsiang
    Lin, Chih-Chun
    Huang, Min-Jie
    Hung, Kevin
    Wu, Yi-Ching
    Lin, Wei-Chieh
    Chen-Cheng, Ren-Wu
    Lin, Hao-Wu
    Cheng, Chien-Hong
    [J]. CHEMICAL SCIENCE, 2016, 7 (07) : 4044 - 4051
  • [10] Effects of field dependent mobility and contact barriers on liquid crystalline phthalocyanine organic transistors
    Cherian, S
    Donley, C
    Mathine, D
    LaRussa, L
    Xia, W
    Armstrong, N
    [J]. JOURNAL OF APPLIED PHYSICS, 2004, 96 (10) : 5638 - 5643