pH-Responsive itaconic acid-based villous-like hydrogels for water-plugging materials

被引:1
作者
Xue, Xiaojie [1 ]
He, Yueqi [1 ]
Jia, Runping [1 ,2 ]
Qian, Hongxiang [2 ]
Lin, Yongfei [3 ]
Xu, Xiaowei [1 ]
Shi, Jichao [1 ]
Chang, Shufang [1 ]
Cui, Aihua [3 ]
机构
[1] Shanghai Inst Technol, Sch Mat Sci & Engn, Shanghai, Peoples R China
[2] Shanghai Huide Sci & Technol Co Ltd, Res & Dev Dept, Shanghai, Peoples R China
[3] Jiangsu Luyuan New Mat Co Ltd, Tech Dept, Nantong, Peoples R China
关键词
bio-based materials; hydrogel; itaconic acid; superabsorbent; waterproofing and plugging;
D O I
10.1002/app.55440
中图分类号
O63 [高分子化学(高聚物)];
学科分类号
070305 ; 080501 ; 081704 ;
摘要
The development of new methods to improve the water absorption performance of polymeric materials, taking into account their environmental friendliness, is a promising research direction in Itaconic acid based water-absorbent polymeric materials. In this study, from the perspective of environmental protection, we propose to design highly absorbent hydrogels with a novel villous-like structure by using hydrophilic itaconic acid as the raw material and combining it with a novel villous-like network structure to substantially increase the contact area between the hydrogel and water, thus improving the water absorption rate of the hydrogel. Itaconic acid is water-soluble and renewable. The widespread use of polymeric water-absorbent polymers from traditional petroleum sources poses a serious threat to the sustainability of ecosystems, and therefore, itaconic acid has attracted much attention as an alternative to petroleum-based polymers. The villous-like network structure is inspired by the villi of the small intestine, the special presence of which expands the absorptive surface area of the small intestine by a factor of about 600, and it is therefore hypothesized that the introduction of this special structure could help the hydrogel to greatly increase the contact area with water and thus achieve the high water absorption properties of the hydrogel. This is also the first time that the villus-like network structure has been applied to Itaconic acid based hydrogels. The results show that the hydrogel has the property of rapid water absorption and swelling and the water absorption rate of the hydrogel can reach up to 2210 g/g, and the villous-like structure formed by the hydrogel can be observed in the SEM image. The water-absorption test of the hydrogel showed that when the molar mass ratio of itaconic acid to acrylic acid was 1:4, the hydrogel absorbed water and swelled rapidly in a short time. The results of the water retention test showed that the hydrogel still existed after 5 days, and the water retention was greater than 86%. In addition, the hydrogel had high reusability, and the water absorption performance of the hydrogel could still reach 89.12% after 6 cycles of the water absorption test. Hydrogel with high water-absorbing property has good application prospects as fast swelling material in the field of flood control of water conservancy projects.
引用
收藏
页数:12
相关论文
共 33 条
  • [21] Modeling and investigation of swelling kinetics of sodium carboxymethyl cellulose/starch/citric acid superabsorbent polymer
    Prasad, Cheera
    Park, Seo Young
    Lee, Jai Sung
    Park, Jae Jun
    Jang, Yeonju
    Lee, Sung Woo
    Lee, Byoung-Min
    Nam, You-Ree
    Rao, A. Karteek
    Choi, Hyeong Yeol
    [J]. INTERNATIONAL JOURNAL OF BIOLOGICAL MACROMOLECULES, 2023, 253
  • [22] Rodriguez-Navarro C, 1998, J AM CERAM SOC, V81, P3032
  • [23] Swelling and drug delivery kinetics of click-synthesized hydrogels based on various combinations of PEG and star-shaped PCL: influence of network parameters on swelling and release behavior
    Saidi, Mohammad
    Dabbaghi, Alaleh
    Rahmani, Sohrab
    [J]. POLYMER BULLETIN, 2020, 77 (08) : 3989 - 4010
  • [24] Sandner B., 1980, ACTA POLYM, V31, P304
  • [25] Macroporous open cell polyester amphigel using citric acid andPEO: Solvent absorption, thermal behavior, and slow release of pesticide
    Sarkar, Dhruba Jyoti
    Shakil, Najam A.
    Kumar, Jitendra
    Rana, Virendra Singh
    Kar, Abhijit
    Behera, Bijay Kumar
    Das, Basanta Kumar
    [J]. JOURNAL OF APPLIED POLYMER SCIENCE, 2021, 138 (04)
  • [26] Dopamine/zinc oxide doped poly(N-hydroxyethyl acrylamide)/agar dual network hydrogel with super self-healing, antibacterial and tissue adhesion functions designed for transdermal patch
    Sun, Fengyu
    Li, Rui
    Jin, Fei
    Zhang, Haiyang
    Zhang, Jin
    Wang, Ting
    Feng, Zhang-Qi
    [J]. JOURNAL OF MATERIALS CHEMISTRY B, 2021, 9 (27) : 5492 - 5502
  • [27] EARLY HYDRATION OF TRICALCIUM SILICATE
    TADROS, ME
    SKALNY, J
    KALYONCU, RS
    [J]. JOURNAL OF THE AMERICAN CERAMIC SOCIETY, 1976, 59 (7-8) : 344 - 347
  • [28] Trejo-Caballero ME, 2023, GREEN CHEM, V25, P6784, DOI [10.1039/d3gc01952g, 10.1039/D3GC01952G]
  • [29] Biopolymer-Based Hydrogels As Scaffolds for Tissue Engineering Applications: A Review
    Van Vlierberghe, S.
    Dubruel, P.
    Schacht, E.
    [J]. BIOMACROMOLECULES, 2011, 12 (05) : 1387 - 1408
  • [30] Wang XH, 2016, J IND ENG CHEM, V41, P82