Protein sensing using deep subwavelength-engineered photonic crystals

被引:3
作者
Zhang, Yanrong [1 ]
Whittington, Christopher s. [2 ]
Layouni, Rabeb [3 ]
Cotto, Andres m. [4 ]
Arnold, Kellen p. [2 ]
Halimi, Sami i. [1 ]
Weiss, Sharon m. [1 ,2 ]
机构
[1] Vanderbilt Univ, Dept Elect & Comp Engn, Nashville, TN 37235 USA
[2] Vanderbilt Univ, Interdisciplinary Mat Sci Program, Nashville, TN 37235 USA
[3] Vanderbilt Univ, Dept Chem & Biomol Engn, Nashville, TN 37235 USA
[4] Univ S Florida, Dept Chem Biol & Mat Engn, Tampa, FL 33620 USA
基金
美国国家科学基金会;
关键词
SENSITIVITY; BIOSENSORS; RESONANCE; CAVITIES; DESIGN;
D O I
10.1364/OL.510541
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
We demonstrate a higher sensitivity detection of proteins in a photonic crystal platform by including a deep subwave-length feature in the unit cell that locally increases the energy density of light. Through both simulations and experiments, the sensing capability of a deep subwavelength-engineered silicon antislot photonic crystal nanobeam (PhCNB) cavity is compared to that of a traditional PhCNB cavity. The redistribution and local enhancement of the energy density by the 50 nm antislot enable stronger light-molecule interaction at the surface of the antislot and lead to a larger resonance shift upon protein binding. This surface-based energy enhancement is confirmed by experiments demonstrating a nearly 50% larger resonance shift upon attachment of streptavidin molecules to biotin-functionalized antislot PhCNB cavities. (c) 2024 Optica Publishing Group
引用
收藏
页码:395 / 398
页数:4
相关论文
共 25 条
[1]   Deep Subwavelength Anti-Slot Photonic Crystals Fabricated in Monolithic Silicon Photonics Technology [J].
Allen, J. A. ;
Arnold, K. P. ;
Halimi, S. I. ;
Ryder, L. D. ;
Afzal, F. O. ;
Bian, Y. ;
Aboketaf, A. ;
Dezfulian, K. ;
Rakowski, M. ;
Augur, R. ;
Hirokawa, T. ;
Nummy, K. ;
Weiss, Sharon M. .
IEEE PHOTONICS TECHNOLOGY LETTERS, 2023, 35 (09) :461-464
[2]   Optical Slot-Waveguide Based Biochemical Sensors [J].
Angulo Barrios, Carlos .
SENSORS, 2009, 9 (06) :4751-4765
[3]   Optical biosensors [J].
Borisov, Sergey M. ;
Wolfbeis, Otto S. .
CHEMICAL REVIEWS, 2008, 108 (02) :423-461
[4]   Optical biosensors: an exhaustive and comprehensive review [J].
Chen, Chen ;
Wang, Junsheng .
ANALYST, 2020, 145 (05) :1605-1628
[5]   Sub-wavelength grating for enhanced ring resonator biosensor [J].
Flueckiger, Jonas ;
Schmidt, Shon ;
Donzella, Valentina ;
Sherwali, Ahmed ;
Ratner, Daniel M. ;
Chrostowski, Lukas ;
Cheung, Karen C. .
OPTICS EXPRESS, 2016, 24 (14) :15672-15686
[6]   Streptavidin Coverage on Biotinylated Surfaces [J].
Hamming, P. H. Erik ;
Huskens, Jurriaan .
ACS APPLIED MATERIALS & INTERFACES, 2021, 13 (48) :58114-58123
[7]   Surface Plasmon Resonance: A Versatile Technique for Biosensor Applications [J].
Hoang Hiep Nguyen ;
Park, Jeho ;
Kang, Sebyung ;
Kim, Moonil .
SENSORS, 2015, 15 (05) :10481-10510
[8]   Photonic metacrystal: design methodology and experimental characterization [J].
Hu, S. ;
Khater, M. ;
Kratschmer, E. ;
Engelmann, S. ;
Green, W. M. J. ;
Weiss, S. M. .
OPTICS EXPRESS, 2022, 30 (05) :7612-7624
[9]   Experimental realization of deep-subwavelength confinement in dielectric optical resonators [J].
Hu, Shuren ;
Khater, Marwan ;
Salas-Montiel, Rafael ;
Kratschmer, Ernst ;
Engelmann, Sebastian ;
Green, William M. J. ;
Weiss, Sharon M. .
SCIENCE ADVANCES, 2018, 4 (08)
[10]   Design of Photonic Crystal Cavities for Extreme Light Concentration [J].
Hu, Shuren ;
Weiss, Sharon M. .
ACS PHOTONICS, 2016, 3 (09) :1647-1653